
The Effect of Fine-tuned Word Embedding
Techniques on the Accuracy of Automated Essay

Scoring Systems Using Neural Networks
Tahereh Firoozi1*, Okan Bulut1, Carrie Demmans Epp2, Ali Naeimabadi2 and Denilson Barbosa2

1Centre for Research in Applied Measurement and Evaluation, University of Alberta,
Edmonton, Canada; tahereh.firoozi@ualberta.ca

2Department of Computing Science, University of Alberta, Edmonton, Canada

Abstract
Automated Essay Scoring (AES) using neural networks has helped increase the accuracy and efficiency of scoring students’
written tasks. Generally, the improved accuracy of neural network approaches has been attributed to the use of modern word
embedding techniques. However, which word embedding techniques produce higher accuracy in AES systems with neural
networks is still unclear. In addition, the importance of fine-tuned word embedding techniques on the accuracy of the AES
systems is not justified yet. This study investigates the effect of fine-tuned modern word embedding techniques, including
pretrained GloVe and Word2Vec, on the accuracy of a deep learning AES model using a Long-Short Term Memory (LSTM)
network. The dataset used in this study consisted of 12,978 essays introduced in the 2012 Automated Scoring Assessment
Prize (ASAP) competition. Results show that fine-tuned word embedding techniques could significantly improve the accuracy
of the AES (QWK= 0.79) compared with the baseline model without pretrained embeddings (QWK = 0.73). Moreover, when
used in AES, the pre-trained GloVe word embedding (QWK= 0.79) outperformed Word2Vec (QWK = 0.77). The results of
this study can guide future AES studies in selecting more appropriate word representations and how to fine-tune the word
embedding techniques for scoring-related tasks.

1. Introduction
A major educational assessment challenge is to assess
students’ written tasks reliably and efficiently. Human
raters usually perform this task, but we need methods
that scale more easily to large online courses or
high-stakes test-taking settings where there may be
thousands of submissions to grade. Automated Essay
Scoring (AES) tries to solve this problem by developing
computational models to assess students’ written tasks
automatically. Recently, with the advent of deep learning
models and advanced tools for extracting linguistic
features (Uto, Xie, & Ueno, 2020), the accuracy of AES
systems has been significantly improved in a way that
AES systems perform comparably to human raters in
terms of their reliability and accuracy (Dong, Zhang,

Journal of Applied Testing Technology, Vol 23(Special Issue 1), 21-29, 2022

& Yang, 2017). Studies have shown that deep learning
models, including Convolutional Neural Networks
(CNNs) and Long-Short-Term Memory (LSTM), can
achieve state-of-the-art accuracy in AES (Taghipour &
Ng, 2016). Similar to promising improvements observed
with deep learning, modern word embedding techniques,
including pretrained GloVe embedding (Pennington,
Socher, & Manning, 2014) and Word2Vec (Mikolov,
Chen, Corrado, & Dean, 2013), have helped improve the
accuracy of neural networks in general. However, it is still
not clear how fine-tuned word embedding techniques
can improve the accuracy of deep learning AES models.
Hence, this study investigated the effect of fine-tuned
Word2Vec and GloVe embeddings on the accuracy of
AES systems using neural networks. The questions which
guided this study are:

Keywords: Automated Essay Scoring, Glove Embedding, Neural Networks, Word Embeddings, Word2Vec

The Effect of Fine-tuned Word Embedding Techniques on the Accuracy of Automated Essay Scoring Systems...

Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology22

1. Do LSTM models using GloVE and word2vec
 embedding techniques outperform a baseline LSTM
model without word embedding techniques?

2. How does fine-tuning the word embeddings impact
the performance of the AES systems?

3. How much does parallelization (i.e., number of
 workers) improve the speed of model training and
memory usage?

1.2 Advances in Automated Essay Scoring
The application of AES to assess students’ written tasks
in educational assessments continues to grow as AES
has become sufficiently reliable in various scoring tasks
(Lottridge, Burkhardt, & Boyer, 2020; Uto, 2021; Uto,
Xie, & Ueno, 2020). This increased reliability relied on
advances in Natural Language Processing (NLP) and
machine learning algorithms (Yan, Rupp, & Foltz, 2020).
Advancements in NLP, such as the advent of linguistic
tools to extract theory-based extensive linguistic features,
including cohesion and coherence (Yang, Cao, Wen, Wu,
& He, 2020), helped traditional machine learning-based
AES models produce more accurate prediction results
(Shin & Gierl, 2020). Advances in machine learning
algorithms and the emergence of deep learning models,
such as Long Short-Term Memory (LSTM), also enabled
AES systems to achieve higher accuracy through learning
the implicit representation of students’ writing patterns
without external human-designed feature engineering
(Kumar & Boulanger, 2020; Rodriguez, Jafari & Ormerod,
2019; Lottridge, Godek, Jafari & Patel, 2021).

The Hewlett Foundation sponsored the Automated
Scoring Assessment Prize (ASAP) to create a competition
to demonstrate machine scoring capability for AES in
2012. The AES models proposed for the competition
resulted in state-of-the-art reliability indices (QWK >
0.70). Although the competition is closed now, researchers
can still use the dataset to improve the accuracy of AES
systems. Various studies focused on learning better
essay representation with neural network models using
the same dataset (e.g., Alikaniotis, Yannakoudakis &
Rei, 2016; Taghipour & Ng, 2016; Zhao, Zhang, Xiong,
Botelho & Heffernan, 2017). Among these studies,
Taghipour and Ng (2016) and Alikaniotis et al., (2016)
achieved state-of-the-art accuracy, QWK = 0.746 and
QWK = 0.73, respectively, for their AES systems. They
tried various recurrent layers for their model, including
basic recurrent units (Elman, 1990), gated recurrent units

(Chung, Gulcehre, Cho & Bengio, 2014), and LSTM, and
the LSTM outperformed the others.

LSTM is a specific form of Recurrent Neural Networks
(RNNs) that learns order dependence in sequence
 classification tasks. LSTM has feedback connections
that process the entire sequence of data and learns the
long- and short-term dependencies by using a cell state
(i.e., long-term memory) in which the previous weight
 information of the input states is stored. While the forget
gate (i.e., short-term memory) placed below the cell state
is used to adjust the weights in the cell states based on
the error rate, it receives in the recursive training process.
The forward-backward (i.e., backpropagation) training
process and the ability to handle long-term dependencies
to consider the context in sequential text analysis caused
the LSTM models to achieve state-of-the-art accuracy in
the ASAP competition. Another significant feature of the
systems that achieved state-of-the-art results using the
ASAP dataset is the word embedding techniques used for
text representation (Taghipour & Ng, 2016; Alikaniotis
3. 2016).

1.3 Text Representation Techniques
For computational text analysis, each text should be
represented by a numerical vector in a vector space.
Each text vector contains various dimensions consisting
of numerical values assigned to each word as the basic
elements in the text representation. So, for text vector
representation, the numerical values (i.e., weights) of the
words should be calculated. Generally, the techniques for
text representation can be divided into four categories:
one-hot-coding, frequency-based (e.g., TFIDF, LSA,
and LDA) (e.g., Landauer, Foltz & Laham, 1998), word
embedding (e.g., Word2Vec and GloVe) (e.g., Mikolov et
al., 2013), and contextual embedding (Elmo, GPT-2, and
BERT) (e.g., Birunda & Devi, 2021; Devlin, Chang, Lee, &
Toutanova, 2018).

One of the elementary techniques for vector
 representation is one-hot encoding, where each word is
given one dimension using a binary value (1 or 0) that
indicates the presence or absence of the word. The main
limitation of one-hot encoding is that it is computationally
expensive when dealing with a large amount of text data,
as each text representation requires millions of dimensions
for sparse word representations. Frequency-based
 techniques, such as TFIDF and Bag of Words (BoW), tried
to solve the problem with sparse vectors by considering

Tahereh Firoozi, Okan Bulut, Carrie Demmans Epp, Ali Naeimabadi and Denilson Barbosa

23Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology

the frequency of the words in vector representation rather
than their presence or absence in a text (Araujo, Golo,
Viana, Sanches, Romero & Marcacini, 2020). Although
these text representation techniques created the possibility
of using machine learning algorithms for automated
text analysis, the meaning of words is not considered in
 calculating word vectors in text representation.

Modern word embedding techniques solved the
 limitation of the conventional frequency-based models by
considering semanticity (i.e., the meaning or sense of the
words in a context that the word is used) in calculating
vector representations. For example, the word “bank” has
different meanings in these contexts: “Bank of England”,
“memory banks”, and “river bank.” When the context of
the word is not considered, the numerical representation
(i.e., feature vectors) might not be calculated accurately,
leading to the misrepresentation of the essays (i.e., data
points) in feature space. Word embedding techniques are
unsupervised learning algorithms that take a corpus of
words and transform them into high-dimensional vectors
in a meaningful manner that semantically relevant words
are clustered together. In word embedding techniques,
each word is represented with an information-rich dense
vector containing ten or hundred dimensions, decreasing
the computational cost in large volumes of text data
(Pennington et al., 2014). The popular word embedding
techniques are GloVe and Word2Vec. There are two
 versions of Word2Vec — Continuous Bag of Words
(CBOW) and Skip-Gram. The CBOW model learns the
embedding by predicting the probability of each word
based on its surrounding words or context constrained
to the window size specified before model training. The
Skip-Gram model learns by predicting the probability of
the context of a word--gram neighboring words-based
on a set of words. Word2Vec tries to capture the co-
occurrence of words one window at a time.

The GloVe model combines the matrix factorization
methods (Cai, He, Wang, Bao, & Han, 2009) and the
 window-based methods to consider both the statistical
and contextual information of words in calculating word
vectors. Hence, the GloVe learns the embeddings based on
a co-occurrence matrix showing the count of the overall
statistics of how often words appear together in a text
based on their semantic similarity. The vector spaces of the
regular word embeddings can be trained on the dataset of
the target task. However, given that the pretrained word

vectors with a high number of parameters improve model
robustness and uncertainty estimates, they are often
preferred over the regular word embedding techniques
(Hendrycks, Lee & Mazeika, 2019). When vector
spaces are pre-trained on massive corpora, it is called a
 pre-trained word vector representation. The pretrained
word vectors can also be downloaded for free and mapped
to the word vectors of the target task. GloVe model was
trained on five corpora, Such as Gigaword, Wikipedia,
and Twitter with about 55 billion tokens and 400,000
most frequent words (Pennington et al., 2014). Hence,
the GloVe pretrained model contains rich statistical
and contextual information about the most frequent
words used as embeddings for various text classification
tasks. Research showed that word embedding models
 outperform conventional embeddings in NLP tasks,
such as text detection (e.g., Gao, He, Zhang & Xia, 2017),
 sentiment analysis (e.g., Jang, Kim, Harerimana, Kang
& Kim, 2020), text summarization (e.g., Haider, Hossin,
Mahi & Arif, 2020), and feature selection (e.g., Wu, Li,
Guo, Wang, Ren, Wang & Yang, 2022; Tian, Li & Li, 2018).

Recently, contextual embedding methods, such
as BERT (Devlin, Chang, Lee & Toutanova, 2018),
 outperformed the current word embedding techniques
by showing state-of-the-art accuracy in text classification
tasks (e.g., Fernandez, Gosh, Liu, Wang, Choffin,
Baraniuk & Lan, 2022; Ormerod, Malhotra & Jafari,
2021). Contextual-based embeddings learn the context
of the words using transformers containing an attention
mechanism that enables the model to learn the global
dependency of the text using the Next Sentence Prediction
(NSP) and the Mask Language Model (MLM) training
strategies. In addition, the BERT learns the sequence of
words in a text bi-directionally (left and right sides). The
attention mechanism and bidirectional learning of the text
are two unique advantages of transformer-based language
methods to capture the contextual information of words
in a text at the global level (beyond the neighboring
words). Although contextual embedding methods showed
 promising results in text classification tasks1, such as AES,
this study focuses on word embedding techniques for text
representation. In practice, the computational cost of
transformer models such as BERT may not be justified
unless its unique features provide benefits to the tasks such
as transfer learning and multilingual AES, which word
embedding models cannot solve. Hence, for supervised

1https://github.com/NAEP-AS-Challenge/info/blob/main/results.md

The Effect of Fine-tuned Word Embedding Techniques on the Accuracy of Automated Essay Scoring Systems...

Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology24

text classification, such word embedding techniques can
provide the same benefits with less computational cost
(Mayfield & Black, 2020).

Although the advantages of word embedding
 techniques on text classification tasks are justified, it is
still unclear how fine-tuned word embedding techniques
can affect the accuracy of the AES systems using neural
network models. Thus, this study investigated the effect
of fine-tuned word vector representations on improving
AES neural networks. To this aim, we used pretrained
GloVe and Word2Vec embeddings and examined how
fine-tuning their hyperparameters affects the accuracy of
a two-layer LSTM model.

2. Methods

2.1 Data
The dataset used in this study was introduced in the
ASAP competition organized by Kaggle in 20122. The
data contains eight essay prompts that are accompanied
by many essay responses. The average length of each
essay is between 350 to 650 words, and the possible score
ranges across each prompt (Table 1). Two human raters
scored each essay, and the maximum of the two scores
was announced as the final score for the essays. When
there was a significant discrepancy between the scores
of the two raters, the essay was scored by a third human
rater to increase the scoring reliability. In order to use
all the prompts together, in this study, we normalized
the scores to have values between 0 and 1. The data was
divided into the train (60%), validation (20%), and test
(20%) sets. The train set was used to train embeddings
and LSTM models, the validation set was used for
hyperparameter tunning of the trained models, and the
test set was used to see the result of the final model on
the unseen dataset.

2.2 Data Analysis
Data analysis was divided into three steps: data processing
and embedding, model development, and model
evaluation. Preprocessing was performed in Python 3.6

using the NLTK library. All words were converted into
lowercase and lemmatized (Bird, Klein & Loper, 2009).
Non-alphabetic words and numbers were removed.
Punctuation was kept and treated as separate words. This
cleaned data was then tokenized at the word level. Each
token was assigned a unique numeric index so that the
index matched the location of the word in an embedding
matrix. In addition, the embedding weight matrices were
also constructed for the unique words in the essay sets
using Word2Vec and GloVe.

Table 1. Descriptive statistics of the ASAP dataset

Prompt Number
of

Essays

Number of
Words

Scores

Mean SD Range Mean SD
1 1783 350 2.01 2-12 8.53 1.53
2 1800 350 1.73 1-6 3.41 0.77
3 1726 150 0.81 0-3 1.84 0.81
4 1772 150 0.96 0-3 1.43 0.93
5 1805 150 0.86 0-4 2.41 0.96
6 1800 150 0.86 0-4 2.72 0.96
7 1569 250 2.37 0-30 16.07 4.57
8 723 650 0.93 0-60 36.98 5.66

2.2.1 Model Architecture
A two-layer LSTM neural network was developed using
Tensorflow and Keras. This LSTM was used as our
primary prediction system. The model’s input was the
word embedded matrix, and the hidden layer was a
two-layer neural LSTM to learn the features end-to-end.
The initial embedding layer served as a lookup table
to map the input tokens into word vectors of different
dimensions. The output was the predicted score for the
essays in the range of 0 to 1. Figure 1 shows a conceptual
representation of our model using the embedding
techniques. The baseline model against which we
compared the performance of the word embedding
techniques is similar to the model architecture in
Figure 1, except for the embedding layer. In the Baseline
model, rather than GloVe and Word2Vec, the word
frequencies were used for text representations.

2https://www.kaggle.com/c/asap-aes/data

Tahereh Firoozi, Okan Bulut, Carrie Demmans Epp, Ali Naeimabadi and Denilson Barbosa

25Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology

Figure 1. Conceptual representation of the AES model.

In this study, the LSTM model takes the input feature
embedded matrix. The model comprises a sequential
input layer corresponding to the number of words in each
essay, followed by two LSTM layers (the recommended
number of layers for text classification) and a dense layer.
Feature extraction was conducted at the LSTM layers
with a pooling layer to down-sample the feature maps
and compress the dimensions. We used max pooling- a
 function that calculates the maximum value for patches
of a feature map- in our model because research showed
that max pooling performs the best among other pooling
 functions in classification tasks using the LSTM model
(Kao, Sun, Wang & Wang, 2020). The number of hidden
units after the pooling layer was 64. To prevent model
overfitting, we followed the optimal dropout rate of 50%
(q = 0.5) (e.g., Baldi, Pierre, Peter & Sadowski, 2013;
Pauls & Yoder, 2018) in the hidden nodes for each epoch.
A non-linear activation function (Relu) is applied to
the model to introduce some nonlinearity in the model
 learning. Relu was used over the softplus and sigmoid
 functions to reduce the computational time (Pauls & Yoder,
2018). The output dimension of the dense layer before the
scoring layer was 32. The softmax activation function
was used at the scoring layer because we considered the
task as a regression problem. Hence the softmax function
converted the output of the dense layer (a vector of real

numbers) to the original continuous scores [0,1] after
normalization. Our objective was to minimize the square
error between predicted and actual scores. The training
was conducted at 10 epochs and a batch size of 64.

2.3 Evaluation Framework
We adopted a Quadratic Weighted Kappa (QWK) score
for model evaluation to measure performance accuracy
(Williamson, Xi & Breyer, 2012). Given that the original
kappa coefficient assumed nominal categories, QWK
was later introduced to extend the kappa coefficient to
non-nominal categories through weighting. The idea
behind QWK is that the misclassifications are also given
partial credit (weight) based on how close they are to the
correct class. QWK was the official agreement measure in
the ASAP competition, where the dataset of the current
study originated. Also, most studies that developed AES
systems using the competition dataset reported kappa as
their main evaluation criteria.

2.4 Tuning Process
After training the built model using the training set
(n = 7,768), we used the evaluation set (n = 2,595) to
tune the hyperparameters of the embeddings to improve
the performance and efficiency of the model. The best
hyperparameters were selected for the model based on
the model accuracy (QWK score) after each epoch. The
initial settings were adopted from similar models available
on GitHub (Alikaniotis et al., 2016). In order to decide
on the efficacy of the embedding models in terms of the
used memory space and the processing time, three more
settings (i.e., time, number of workers, and used memory)
were also included in this study. In addition, throughout
the procedure, we tuned one parameter at a time while
holding the others constant.

3. Results

3.1 Hyperparameter Tunning:
Word2Vec Model

Table 2 shows the settings of the Pretrained Word2Vec
approach. The model variables for tuning Word2Vec
include the number of features, minimum word count,
number of workers, window (context), and the algorithm
employed to learn the embedding features. Also,

The Effect of Fine-tuned Word Embedding Techniques on the Accuracy of Automated Essay Scoring Systems...

Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology26

Word2Vec can use the Continuous Bag of Words (CBOW)
or skip-gram methods, represented as algorithms 0 and 1,
respectively. The results showed that compared with the
initial settings, the optimized settings after the fine-tuning
process increased the QWK for the Word2Vec model
from 0.73 to 0.76.

Table 2. Settings of the pre-trained Word2Vec model

Word2Vec model
variables

Initial
setting

Optimized
setting

after tuning
procedure

Number of features 300 300
Minimum word count 40 20
Context 10 20
Algorithm 0 1
Time(s) 608 620
Used memory
(Gigabytes)

3.55 1.15

Number of workers 4 6
QWK 0.73 0.76

The number of features is the size of the vector space
specified as part of the pretrained GloVe and Word2Vec
models. In this study, the number of features was kept to
300, which can be considered a reasonably large value
since it resulted in high accuracy in previous studies
(Dong et al., 2017). The minimum word count for training
is the threshold for ignoring the words with fewer total
frequencies in the context. Figure 2 shows the influence
of minimum word count on QWK.

Figure 2. Effect of minimum word count on QWK of
Word2Vec model.

Initially, the minimum word count was set to 40.
Increasing the minimum word count to 50 (i.e., the
 highest possible value) resulted in a negligible increase

in the model’s accuracy. However, changing it to lower
values like 5 (as an extreme case) led to high variance
and overfitting, leading to a lowered score from 0.741 to
0.641. In addition, changing the minimum word count
to 20 raised QWK to 0.755. Therefore, the optimized
 minimum word count was set to 20. Another parameter
in tuning Word2Vec is the window size. When the
 window size increases, more context can be captured
for estimating the weights of words. However, large
 window sizes can also decrease the quality of model
training (Levy & Goldberg, 2014). Thus, we carefully
increased the window size of the initial setting from 10
to 15, 20, and then 25. The optimal result was achieved
when the window size was set to 20. The algorithm in
Table 2 represents CBOW (0) and skip-gram (1). The
results showed that QWK for CBOW and skip-gram
methods were 0.73 and 0.74, respectively. Therefore,
only the skip-gram algorithm was used for the rest of the
 computations of the Word2Vec model.

Time, used memory, and the number of workers in
Table 2 represent the time and computational cost of the
model using the set parameters. Generally, an increase
in the number of workers results in a faster training
process. In this study, we could increase the number of
workers from 4 to 6. As Table 2 shows, the set parameters
for Word2Vec increased the model training time and
decreased the used memory.

3.2 Hyperparameter Tunning: GloVe
Embedding

Results of fined tunning parameters, including the number
of components (features), number of threads, window,
learning rate, and epochs for the pretrained GloVe
model, are represented in Table 3. This tuning procedure
increased the accuracy of the GloVe embedding AES
model from 0.76 to 0.79 (i.e., a 3% increase in prediction
accuracy).

As Table 3 indicates, the initial setting for the number
of components (i.e., 300 dimensions GloVe) resulted in the
best accuracy for the model. The impact of window size on
QWK in GloVe was similar to that of Word2Vec. GloVe
had the highest QWK value when the window was set to
20. Furthermore, as Figure 3 depicts, raising the learning
rate from 0.05 to 0.15 is advantageous in terms of both
computational cost and accuracy. Hence, the optimum
learning rate was set at 0.15. Based on the computational
cost, the time, the number of threads, and memory usage,

Tahereh Firoozi, Okan Bulut, Carrie Demmans Epp, Ali Naeimabadi and Denilson Barbosa

27Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology

the results show that the optimized settings for GloVe are
more efficient than the initial settings.

Table 3. Settings for GloVe word embedding

GloVe model
variables

Initial
setting

Optimized setting after
tuning procedure

Number of
components

300 300

Window 10 20
Learning rate 0.05 0.15
Epochs 10 10
Time(s) 885 414
Number of
threads

6 6

Used memory
(Gigabytes)

3.59 1.51

QWK 0.76 0.79

Figure 3. The effect of learning rate on QWK for GloVe
word embedding.

3.3 Models Performance
The results of different word embedding techniques
incorporated into the LSTM model are summarized
in Table 4. As Table 4 shows, the word embedding
techniques improved the accuracy of the baseline LSTM
model. More specifically, the word2Vec model before
fine tuning resulted in the lowest improvement, and
fine tunned GloVe resulted in the highest improvement
(6%) in the model’s accuracy. The GloVe model before
fine tuning and the Fine Tunned Word2Vec performed
the same (QWK = 0.77) in increasing the accuracy of the
baseline model.

Table 4. Accuracy of the LSTM model using word
embeddings

Embedding techniques QWK Accuracy
improvement (%)

LSTM (Baseline model
without embedding
technique)

0.73 –

Word2Vec (skip-gram)
(before Fine Tuning)

0.75 2

GloVe (before Fine Tunning) 0.77 4
Fine Tuned Word2Vec 0.77 4
Fine Tuned Glove 0.79 6

4. Discussion
This study addressed the research question of whether
fine-tuned modern word embedding techniques could
impact the accuracy of deep learning AES models. The
research question was introduced to understand whether
the combination of recent advances in NLP techniques
and deep learning algorithms can produce more accurate
AES systems. In line with the result of various shared task
studies (Dong et al., 2017; Zhao et al., 2017), this study
indicated that pre-trained word embedding techniques
could significantly improve the accuracy of AES neural
network models. Results showed that when word
embeddings are fine-tuned, they can not only improve the
accuracy of the AES systems, but they also help increase
the computational efficacy of the models in terms of
training time. Inconsistent with Dong et al. (2017), our
study showed a tradeoff between accuracy and efficacy
in making decisions for the number of pre-trained
dimensions (50 or 300).

This study adds to the AES literature by showing
the importance of word embedding techniques in the
 accuracy of AES models. Our results showed that GloVe
word embedding outperformed Word2Vec in improving
the accuracy of AES systems. However, the inconsistency
of this result with that of other studies (Pickard, 2020;
Salehi, Cook, & Baldwin, 2015) shows that the superiority
of these two embedding techniques can depend on the
task. For example, in essay tasks where the context of use
is an important factor, GloVe can outperform Word2Vec.
In contrast, in predicting the semantic compositionality
of multiword expressions where the context of use is not
a determining factor, Word2Vec showed superiority over
GloVe embeddings (Pickard, 2020). Overall, our results

The Effect of Fine-tuned Word Embedding Techniques on the Accuracy of Automated Essay Scoring Systems...

Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology28

can guide future AES studies in selecting more efficient
word representations for their models. Moreover, this
study’s tuned parameters for word embeddings can be
used as initial settings for future similar studies.

Although the results of this study show the
 performance of fine-tuned word embedding techniques
in predicting essay scores, further studies are needed to
investigate the accuracy of the AES systems when other
advances in NLP, including tools that extract linguistic
features that are known to be important to writing quality
(Uto, Xie, & Ueno, 2020), are jointly used with word
embedding techniques as part of deep learning models.
Moreover, given the importance of context on essay tasks,
future studies can also investigate the effect of other
 contextualized word embedding techniques, such as BERT
(Devlin et al., 2018), on the accuracy of AES systems.

This study used all eight essay prompts in the ASAP
dataset. It is also possible to explore and compare the
performance of the word embedding techniques for each
prompt separately. This future investigation would allow
researchers to see whether word embedding techniques
perform differently on texts with different attributes. Given
the variance in expectations across writing styles, future
studies can compare the effect of different word embedding
techniques on model performance for other writing genres,
including persuasive, argumentative, and narrative texts.

5. References
Alikaniotis, D., Yannakoudakis, H. & Rei, M. (2016). Automatic

text scoring using neural networks. arXiv preprint
arXiv:1606.04289. https://doi.org/10.18653/v1/P16-1068

Araujo, A., Golo, M., Viana, B., Sanches, F., Romero, R.
& Marcacini, R. (2020, October). From bag-of-words
to pre-trained neural language models: Improving
automatic classification of app reviews for requirements
engineering. In Anais do XVII Encontro Nacional de
Inteligência Artificial e Computacional (pp. 378-389). SBC.
https://doi.org/10.5753/eniac.2020.12144

Baldi, Pierre, and Peter J. Sadowski (2013). Understanding
dropout. Advances in Neural Information Processing Systems.

Bird, S., Klein, E. & Loper, E. (2009). Natural language
processing with Python: analyzing text with the natural
language toolkit. O’Reilly Media, Inc.

Birunda, S. & Devi, R. K. (2021). A review on word embedding
techniques for text classification. In Innovative Data

Communication Technologies and Application. Springer,
267-281. https://doi.org/10.1007/978-981-15-9651-3_23

Cai, D., He, X., Wang, X., Bao, H., & Han, J. (2009, June).
Locality preserving nonnegative matrix factorization. In 21st
International Joint Conference on Artificial Intelligence.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805.

Dong, F., Zhang, Y. and Yang, J. (2017, August). Attention-based
recurrent convolutional neural network for automatic
essay scoring. In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL 2017)
(pp. 153-162). https://doi.org/10.18653/v1/K17-1017

Elman, J. L. (1990). Finding structure in time. Cognitive
Science, 14(2), 179-211. https://doi.org/10.1207/
s15516709cog1402_1

Fernandez, N., Ghosh, A., Liu, N., Wang, Z., Choffin, B.,
Baraniuk, R. & Lan, A. (2022). Automated Scoring for
Reading Comprehension via In-context BERT Tuning. arXiv
preprint arXiv:2205.09864. https://doi.org/10.1007/978-3-
031-11644-5_69

Gao, J., He, Y., Zhang, X. & Xia, Y. (2017, November). Duplicate
short text detection based on Word2vec. In 2017 8th IEEE
International Conference on Software Engineering and
Service Science (ICSESS) (pp. 33-37). IEEE. https://doi.
org/10.1109/ICSESS.2017.8342858

Haider, M. M., Hossin, M. A., Mahi, H. R. & Arif, H. (2020,
June). Automatic text summarization using gensim
word2vec and k-means clustering algorithm. In 2020 IEEE
Region 10 Symposium (TENSYMP) (pp. 283-286). IEEE
https://doi.org/10.1109/TENSYMP50017.2020.9230670

Hendrycks, D., Lee, K. & Mazeika, M. (2019, May). Using pre-
training can improve model robustness and uncertainty. In
International Conference on Machine Learning (pp. 2712-
2721). PMLR.

Jang, B., Kim, M., Harerimana, G., Kang, S. U. & Kim, J.
W. (2020). Bi-LSTM model to increase accuracy in
text classification: Combining Word2vec CNN and
attention mechanism. Applied Sciences, 10(17), 5841.
https://doi.org/10.3390/app10175841

Kao, C. C., Sun, M., Wang, W., & Wang, C. (2020, May). A
comparison of pooling methods on LSTM models for
rare acoustic event classification. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 316-320). https://doi.
org/10.1109/ICASSP40776.2020.9053150

Tahereh Firoozi, Okan Bulut, Carrie Demmans Epp, Ali Naeimabadi and Denilson Barbosa

29Vol 23(Special Issue 1) | 2022 | http://jattjournal.net Journal of Applied Testing Technology

Kumar, V., & Boulanger, D. (2020, October). Explainable
automated essay scoring: Deep learning really has
 pedagogical value. In Frontiers in education (Vol. 5, p.
572367). Frontiers Media SA. https://doi.org/10.3389/
feduc.2020.572367

Landauer, T. K., Foltz, P. W. & Laham, D. (1998). An introduction
to latent seman ic analysis. Discourse Processes, 25(2-3),
259-284. https://doi.org/10.1080/01638539809545028

Lottridge, S., Godek, B., Jafari, A., & Patel, M. (2021). Comparing
the robustness of deep learning and classical automated
scoring approaches to gaming strategies. Technical report,
Cambium Assessment Inc.

Lottridge, S., Burkhardt, A. & Boyer, M. (2020). Digital module
18: Automated scoring https://ncme.elevate.commpartners.
com. Educational Measurement: Issues and Practice, 39(3),
141-142. https://doi.org/10.1111/emip.12388

Levy, O. & Goldberg, Y. (2014, June). Dependency-based word
embeddings. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume
2: Short Papers) (pp. 302-308). https://doi.org/10.3115/v1/
P14-2050 PMid:25270273

Mayfield, E. & Black, A. W. (2020, July). Should you fine-
tune BERT for automated essay scoring? In Proceedings
of the Fifteenth Workshop on Innovative Use of NLP
for Building Educational Applications (pp. 151-162).
https://doi.org/10.18653/v1/2020.bea-1.15

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient
estimation of word representations in vector space. arXiv.
https://doi.org/10.48550/arXiv.1301.3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J.
(2013). Distributed representations of words and phrases
and their compositionality. Advances in Neural Information
Processing Systems, 26.

Ormerod, C., Malhotra, A. & Jafari, A. (2021). Automated essay
scoring using efficient transformer-based language models.
rXiv preprint: https://arxiv.org/abs/2102.13136

Pennington, J., Socher, R. & Manning, C.D. (2014, October).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on Empirical Methods
In Natural Language Processing (EMNLP) (pp. 1532-1543).
https://doi.org/10.3115/v1/D14-1162

Pickard, T. (2020, December). Comparing word2vec and GloVe
for automatic measurement of MWE compositionality.
In Proceedings of the Joint Workshop on Multiword
Expressions and Electronic Lexicons (pp. 95-100).

Pauls, A. & Yoder, J. (2018) Determining optimum drop-out
rate for neural networks. Midwest Instructional Computing
Symposium (MICS).

Rodriguez, P. U., Jafari, A. & Ormerod, C. M. (2019). Language
models and automated essay scoring. arXiv preprint
arXiv:1909.09482.

Salehi, B., Cook, P. & Baldwin, T. (2015). A word embedding
approach to predicting the compositionality of multiword
expressions. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies
(pp. 977-983). https://doi.org/10.3115/v1/N15-1099

Shin, J. & Gierl, M.J. (2020). More efficient processes for creating
automated essay scoring frameworks: A demonstration of
two algorithms. Language Testing, p. 0265532220937830.
https://doi.org/10.1177/0265532220937830

Taghipour, K. & Ng, H.T. (2016, November). A neural approach
to automated essay scoring. In Proceedings of the 2016
conference on empirical methods in natural language
processing (pp. 1882-1891). https://doi.org/10.18653/v1/
D16-1193

Tian, W., Li, J. & Li, H. (2018, July). A method of feature selection
based on Word2Vec in text categorization. In 2018 37th
Chinese Control Conference (CCC) (pp. 9452-9455). IEEE.
https://doi.org/10.23919/ChiCC.2018.8483345

Uto, M. (2021). A review of deep-neural automated essay
scoring models. Behavior Metrika, 48(2), 459-484. https://
doi.org/10.1007/s41237-021-00142-y

Uto, M., Xie, Y. & Ueno, M. (2020). Neural Automated Essay
Scoring Incorporating Handcrafted Features. In Proceedings
of the 28th International Conference on Computational
Linguistics, pages 6077-6088, Barcelona, Spain (Online).
International Committee on Computational Linguistics
https://doi.org/10.18653/v1/2020.coling-main.535

Williamson, D. M., Xi, X. & Breyer, F. J. (2012). A framework
for evaluation and use of automated scoring. Educational
Measurement: Issues and Practice, 31(1), 2-13. https://doi.
org/10.1111/j.1745-3992.2011.00223.x

Wu, C., Li, X., Guo, Y., Wang, J., Ren, Z., Wang, M. & Yang, Z.
(2022). Natural language processing for smart construction:
Current status and future directions. Automation in
Construction, 134, 104059. https://doi.org/10.1016/j.
autcon.2021.104059

Yang, D., Rupp, A.A. & Foltz, P.W. eds. (2020). Handbook
of automated scoring: Theory into practice. New York,
NY: Taylor & Francis Group/CRC Press. https://doi.
org/10.1201/9781351264808

Zhao, S., Zhang, Y., Xiong, X., Botelho, A. & Heffernan, N.
(2017, April). A memory-augmented neural model for
automated grading. In Proceedings of the 4th (2017) ACM
Conference on Learning@ scale (pp. 189-192). https://doi.
org/10.1145/3051457.3053982

