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Abstract
Automated Essay Scoring (AES) using neural networks has helped increase the accuracy and efficiency of scoring students’ 
written tasks. Generally, the improved accuracy of neural network approaches has been attributed to the use of modern word 
embedding techniques. However, which word embedding techniques produce higher accuracy in AES systems with neural 
networks is still unclear. In addition, the importance of fine-tuned word embedding techniques on the accuracy of the AES 
systems is not justified yet. This study investigates the effect of fine-tuned modern word embedding techniques, including 
pretrained GloVe and Word2Vec, on the accuracy of a deep learning AES model using a Long-Short Term Memory (LSTM) 
network. The dataset used in this study consisted of 12,978 essays introduced in the 2012 Automated Scoring Assessment 
Prize (ASAP) competition. Results show that fine-tuned word embedding techniques could significantly improve the accuracy 
of the AES (QWK= 0.79) compared with the baseline model without pretrained embeddings (QWK = 0.73). Moreover, when 
used in AES, the pre-trained GloVe word embedding (QWK= 0.79) outperformed Word2Vec (QWK = 0.77). The results of 
this study can guide future AES studies in selecting more appropriate word representations and how to fine-tune the word 
embedding techniques for scoring-related tasks. 

1. Introduction
A major educational assessment challenge is to assess 
students’ written tasks reliably and efficiently. Human 
raters usually perform this task, but we need methods 
that scale more easily to large online courses or  
high-stakes test-taking settings where there may be 
thousands of submissions to grade. Automated Essay 
Scoring (AES) tries to solve this problem by developing 
computational models to assess students’ written tasks 
automatically. Recently, with the advent of deep learning 
models and advanced tools for extracting linguistic 
features (Uto, Xie, & Ueno, 2020), the accuracy of AES 
systems has been significantly improved in a way that 
AES systems perform comparably to human raters in 
terms of their reliability and accuracy (Dong, Zhang, 
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& Yang, 2017). Studies have shown that deep learning 
models, including Convolutional Neural Networks 
(CNNs) and Long-Short-Term Memory (LSTM), can 
achieve state-of-the-art accuracy in AES (Taghipour & 
Ng, 2016). Similar to promising improvements observed 
with deep learning, modern word embedding techniques, 
including pretrained GloVe embedding (Pennington, 
Socher, & Manning, 2014) and Word2Vec (Mikolov, 
Chen, Corrado, & Dean, 2013), have helped improve the 
accuracy of neural networks in general. However, it is still 
not clear how fine-tuned word embedding techniques 
can improve the accuracy of deep learning AES models. 
Hence, this study investigated the effect of fine-tuned 
Word2Vec and GloVe embeddings on the accuracy of 
AES systems using neural networks. The questions which 
guided this study are:
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1. Do LSTM models using GloVE and word2vec 
 embedding techniques outperform a baseline LSTM 
model without word embedding techniques? 

2. How does fine-tuning the word embeddings impact 
the performance of the AES systems?

3. How much does parallelization (i.e., number of 
 workers) improve the speed of model training and 
memory usage? 

1.2 Advances in Automated Essay Scoring
The application of AES to assess students’ written tasks 
in educational assessments continues to grow as AES 
has become sufficiently reliable in various scoring tasks 
(Lottridge, Burkhardt, & Boyer, 2020; Uto, 2021; Uto, 
Xie, & Ueno, 2020).  This increased reliability relied on 
advances in Natural Language Processing (NLP) and 
machine learning algorithms (Yan, Rupp, & Foltz, 2020). 
Advancements in NLP, such as the advent of linguistic 
tools to extract theory-based extensive linguistic features, 
including cohesion and coherence (Yang, Cao, Wen, Wu, 
& He, 2020), helped traditional machine learning-based 
AES models produce more accurate prediction results 
(Shin & Gierl, 2020). Advances in machine learning 
algorithms and the emergence of deep learning models, 
such as Long Short-Term Memory (LSTM), also enabled 
AES systems to achieve higher accuracy through learning 
the implicit representation of students’ writing patterns 
without external human-designed feature engineering 
(Kumar & Boulanger, 2020; Rodriguez, Jafari & Ormerod, 
2019; Lottridge, Godek, Jafari & Patel, 2021). 

The Hewlett Foundation sponsored the Automated 
Scoring Assessment Prize (ASAP) to create a  competition 
to demonstrate machine scoring capability for AES in 
2012. The AES models proposed for the competition 
resulted in state-of-the-art reliability indices (QWK > 
0.70). Although the competition is closed now,  researchers 
can still use the dataset to improve the  accuracy of AES 
systems. Various studies focused on learning better 
essay representation with neural network models using 
the same dataset (e.g., Alikaniotis, Yannakoudakis & 
Rei, 2016; Taghipour & Ng, 2016; Zhao, Zhang, Xiong, 
Botelho & Heffernan, 2017). Among these studies, 
Taghipour and Ng (2016) and Alikaniotis et al., (2016) 
achieved state-of-the-art accuracy, QWK = 0.746 and 
QWK = 0.73, respectively, for their AES systems. They 
tried various recurrent layers for their model, including 
basic recurrent units (Elman, 1990), gated recurrent units 

(Chung, Gulcehre, Cho & Bengio, 2014), and LSTM, and 
the LSTM outperformed the others. 

LSTM is a specific form of Recurrent Neural Networks 
(RNNs) that learns order dependence in sequence 
 classification tasks. LSTM has feedback connections 
that process the entire sequence of data and learns the 
long- and short-term dependencies by using a cell state 
(i.e., long-term memory) in which the previous weight 
 information of the input states is stored. While the forget 
gate (i.e., short-term memory) placed below the cell state 
is used to adjust the weights in the cell states based on 
the error rate, it receives in the recursive training process. 
The forward-backward (i.e., backpropagation) training 
process and the ability to handle long-term dependencies 
to consider the context in sequential text analysis caused 
the LSTM models to achieve state-of-the-art accuracy in 
the ASAP competition. Another significant feature of the 
systems that achieved state-of-the-art results using the 
ASAP dataset is the word embedding techniques used for 
text representation (Taghipour & Ng, 2016; Alikaniotis 
3. 2016). 

1.3 Text Representation Techniques
For computational text analysis, each text should be 
represented by a numerical vector in a vector space. 
Each text vector contains various dimensions consisting 
of numerical values assigned to each word as the basic 
elements in the text representation. So, for text vector 
representation, the numerical values (i.e., weights) of the 
words should be calculated. Generally, the techniques for 
text representation can be divided into four categories: 
one-hot-coding, frequency-based (e.g., TFIDF, LSA, 
and LDA) (e.g., Landauer, Foltz & Laham, 1998), word 
embedding (e.g., Word2Vec and GloVe) (e.g., Mikolov et 
al., 2013), and contextual embedding (Elmo, GPT-2, and 
BERT) (e.g., Birunda & Devi, 2021; Devlin, Chang, Lee, & 
Toutanova, 2018). 

One of the elementary techniques for vector 
 representation is one-hot encoding, where each word is 
given one dimension using a binary value (1 or 0) that 
indicates the presence or absence of the word. The main 
limitation of one-hot encoding is that it is computationally 
expensive when dealing with a large amount of text data, 
as each text representation requires millions of  dimensions 
for sparse word representations. Frequency-based 
 techniques, such as TFIDF and Bag of Words (BoW), tried 
to solve the problem with sparse vectors by considering 
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the  frequency of the words in vector representation rather 
than their presence or absence in a text (Araujo, Golo, 
Viana, Sanches, Romero & Marcacini, 2020). Although 
these text representation techniques created the  possibility 
of using machine learning algorithms for automated 
text analysis, the meaning of words is not considered in 
 calculating word vectors in text representation. 

Modern word embedding techniques solved the 
 limitation of the conventional frequency-based models by 
considering semanticity (i.e., the meaning or sense of the 
words in a context that the word is used) in calculating 
vector representations. For example, the word “bank” has 
different meanings in these contexts: “Bank of England”, 
“memory banks”, and “river bank.” When the context of 
the word is not considered, the numerical representation 
(i.e., feature vectors) might not be calculated accurately, 
leading to the misrepresentation of the essays (i.e., data 
points) in feature space. Word embedding techniques are 
unsupervised learning algorithms that take a corpus of 
words and transform them into high-dimensional vectors 
in a meaningful manner that semantically relevant words 
are clustered together. In word embedding techniques, 
each word is represented with an information-rich dense 
vector containing ten or hundred dimensions,  decreasing 
the computational cost in large volumes of text data 
(Pennington et al., 2014). The popular word  embedding 
techniques are GloVe and Word2Vec. There are two 
 versions of Word2Vec — Continuous Bag of Words 
(CBOW) and Skip-Gram. The CBOW model learns the 
embedding by predicting the probability of each word 
based on its surrounding words or context constrained 
to the window size specified before model training. The 
Skip-Gram model learns by predicting the probability of 
the context of a word--gram neighboring words-based 
on a set of words. Word2Vec tries to capture the co- 
occurrence of words one window at a time. 

The GloVe model combines the matrix  factorization 
methods (Cai, He, Wang, Bao, & Han, 2009) and the 
 window-based methods to consider both the  statistical 
and contextual information of words in calculating word 
vectors. Hence, the GloVe learns the embeddings based on 
a co-occurrence matrix showing the count of the  overall 
statistics of how often words appear together in a text 
based on their semantic similarity. The vector spaces of the 
regular word embeddings can be trained on the  dataset of 
the target task. However, given that the  pretrained word 

vectors with a high number of  parameters improve model 
robustness and uncertainty estimates, they are often 
preferred over the regular word embedding  techniques 
(Hendrycks, Lee & Mazeika, 2019). When  vector 
spaces are pre-trained on massive corpora, it is called a 
 pre-trained word vector  representation. The  pretrained 
word vectors can also be downloaded for free and mapped 
to the word vectors of the target task. GloVe model was 
trained on five  corpora, Such as Gigaword, Wikipedia, 
and Twitter with about 55 billion tokens and 400,000 
most frequent words (Pennington et al., 2014). Hence, 
the GloVe pretrained model  contains rich  statistical 
and  contextual  information about the most frequent 
words used as embeddings for various text  classification 
tasks. Research showed that word embedding  models 
 outperform  conventional embeddings in NLP tasks, 
such as text detection (e.g., Gao, He, Zhang & Xia, 2017), 
 sentiment analysis (e.g., Jang, Kim, Harerimana, Kang 
& Kim, 2020), text  summarization (e.g., Haider, Hossin, 
Mahi & Arif, 2020), and feature selection (e.g., Wu, Li, 
Guo, Wang, Ren, Wang & Yang, 2022; Tian, Li & Li, 2018). 

Recently, contextual embedding methods, such 
as BERT (Devlin, Chang, Lee & Toutanova, 2018), 
 outperformed the current word embedding  techniques 
by showing state-of-the-art accuracy in text  classification 
tasks (e.g., Fernandez, Gosh, Liu, Wang, Choffin, 
Baraniuk & Lan, 2022; Ormerod, Malhotra & Jafari, 
2021). Contextual-based embeddings learn the  context 
of the words using transformers  containing an  attention 
mechanism that enables the model to learn the global 
dependency of the text using the Next Sentence Prediction 
(NSP) and the Mask Language Model (MLM) training 
strategies. In addition, the BERT learns the sequence of 
words in a text bi-directionally (left and right sides). The 
attention mechanism and bidirectional learning of the text 
are two unique advantages of  transformer-based  language 
methods to capture the  contextual  information of words 
in a text at the global level (beyond the  neighboring 
words). Although contextual embedding methods showed 
 promising results in text classification tasks1, such as AES, 
this study focuses on word  embedding techniques for text 
representation. In practice, the computational cost of 
transformer models such as BERT may not be justified 
unless its unique features  provide benefits to the tasks such 
as transfer learning and  multilingual AES, which word 
embedding models cannot solve. Hence, for  supervised 

1https://github.com/NAEP-AS-Challenge/info/blob/main/results.md 
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text  classification, such word embedding techniques can 
provide the same benefits with less  computational cost 
(Mayfield & Black, 2020). 

Although the advantages of word embedding 
 techniques on text classification tasks are justified, it is 
still unclear how fine-tuned word embedding techniques 
can affect the accuracy of the AES systems using neural 
network models. Thus, this study investigated the effect 
of fine-tuned word vector representations on improving 
AES neural networks. To this aim, we used pretrained 
GloVe and Word2Vec embeddings and examined how 
fine-tuning their hyperparameters affects the accuracy of 
a two-layer LSTM model.

2. Methods

2.1 Data
The dataset used in this study was introduced in the 
ASAP competition organized by Kaggle in 20122. The 
data contains eight essay prompts that are accompanied 
by many essay responses. The average length of each 
essay is between 350 to 650 words, and the possible score 
ranges across each prompt (Table 1). Two human raters 
scored each essay, and the maximum of the two scores 
was announced as the final score for the essays. When 
there was a significant discrepancy between the scores 
of the two raters, the essay was scored by a third human 
rater to increase the scoring reliability. In order to use 
all the prompts together, in this study, we normalized 
the scores to have values between 0 and 1. The data was 
divided into the train (60%), validation (20%), and test 
(20%) sets. The train set was used to train embeddings 
and LSTM models, the validation set was used for 
hyperparameter tunning of the trained models, and the 
test set was used to see the result of the final model on 
the unseen dataset. 

2.2 Data Analysis
Data analysis was divided into three steps: data processing 
and embedding, model development, and model 
evaluation. Preprocessing was performed in Python 3.6 

using the NLTK library. All words were converted into 
lowercase and lemmatized (Bird, Klein & Loper, 2009). 
Non-alphabetic words and numbers were removed. 
Punctuation was kept and treated as separate words. This 
cleaned data was then tokenized at the word level. Each 
token was assigned a unique numeric index so that the 
index matched the location of the word in an embedding 
matrix. In addition, the embedding weight matrices were 
also constructed for the unique words in the essay sets 
using Word2Vec and GloVe. 

Table 1. Descriptive statistics of the ASAP dataset

Prompt Number 
of 

Essays

Number of 
Words

Scores

Mean SD Range Mean SD
1 1783 350 2.01 2-12 8.53 1.53
2 1800 350 1.73 1-6 3.41 0.77
3 1726 150 0.81 0-3 1.84 0.81
4 1772 150 0.96 0-3 1.43 0.93
5 1805 150 0.86 0-4 2.41 0.96
6 1800 150 0.86 0-4 2.72 0.96
7 1569 250 2.37 0-30 16.07 4.57
8 723 650 0.93 0-60 36.98 5.66

2.2.1 Model Architecture
A two-layer LSTM neural network was developed using 
Tensorflow and Keras. This LSTM was used as  our 
primary prediction system. The model’s input was the 
word embedded matrix, and the hidden layer was a 
two-layer neural LSTM to learn the features end-to-end. 
The initial embedding layer served as a lookup table 
to map the input tokens into word vectors of different 
dimensions. The output was the predicted score for the 
essays in the range of 0 to 1. Figure 1 shows a conceptual 
representation of our model using the embedding 
techniques. The baseline model against which we 
compared the performance of the word embedding 
techniques is similar to the model architecture in 
Figure 1, except for the embedding layer. In the Baseline 
model, rather than GloVe and Word2Vec, the word 
frequencies were used for text representations. 

2https://www.kaggle.com/c/asap-aes/data
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Figure 1. Conceptual representation of the AES model.

In this study, the LSTM model takes the input  feature 
embedded matrix. The model comprises a sequential 
input layer corresponding to the number of words in each 
essay, followed by two LSTM layers (the  recommended 
number of layers for text classification) and a dense layer. 
Feature extraction was conducted at the LSTM layers 
with a  pooling layer to down-sample the feature maps 
and  compress the dimensions. We used max  pooling- a 
 function that calculates the maximum value for patches 
of a feature map- in our model because research showed 
that max pooling performs the best among other  pooling 
 functions in classification tasks using the LSTM model 
(Kao, Sun, Wang & Wang, 2020). The number of  hidden 
units after the pooling layer was 64. To prevent model 
overfitting, we followed the optimal dropout rate of 50% 
(q = 0.5) (e.g., Baldi, Pierre, Peter & Sadowski, 2013; 
Pauls & Yoder, 2018) in the hidden nodes for each epoch. 
A  non-linear activation function (Relu) is applied to 
the model to introduce some nonlinearity in the model 
 learning. Relu was used over the  softplus and sigmoid 
 functions to reduce the computational time (Pauls & Yoder, 
2018). The output dimension of the dense layer before the 
scoring layer was 32. The softmax  activation function 
was used at the scoring layer because we  considered the 
task as a  regression problem. Hence the softmax  function 
converted the output of the dense layer (a vector of real 

numbers) to the original  continuous scores [0,1] after 
normalization. Our objective was to minimize the square 
error between predicted and actual scores. The training 
was conducted at 10 epochs and a batch size of 64. 

2.3 Evaluation Framework
We adopted a Quadratic Weighted Kappa (QWK) score 
for model evaluation to measure performance accuracy 
(Williamson, Xi & Breyer, 2012). Given that the original 
kappa coefficient assumed nominal categories, QWK 
was later introduced to extend the kappa coefficient to 
non-nominal categories through weighting. The idea 
behind QWK is that the misclassifications are also given 
partial credit (weight) based on how close they are to the 
correct class. QWK was the official agreement measure in 
the ASAP competition, where the dataset of the current 
study originated. Also, most studies that developed AES 
systems using the competition dataset reported kappa as 
their main evaluation criteria. 

2.4 Tuning Process 
After training the built model using the training set  
(n = 7,768), we used the evaluation set (n = 2,595) to 
tune the hyperparameters of the embeddings to improve 
the performance and efficiency of the model. The best 
hyperparameters were selected for the model based on 
the model accuracy (QWK score) after each epoch. The 
initial settings were adopted from similar models available 
on GitHub (Alikaniotis et al., 2016). In order to decide 
on the efficacy of the embedding models in terms of the 
used memory space and the processing time, three more 
settings (i.e., time, number of workers, and used memory) 
were also included in this study. In addition, throughout 
the procedure, we tuned one parameter at a time while 
holding the others constant. 

3. Results

3.1  Hyperparameter Tunning:  
Word2Vec Model

Table 2 shows the settings of the Pretrained Word2Vec 
approach. The model variables for tuning Word2Vec 
include the number of features, minimum word count, 
number of workers, window (context), and the algorithm 
employed to learn the embedding features. Also, 
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Word2Vec can use the Continuous Bag of Words (CBOW) 
or skip-gram methods, represented as algorithms 0 and 1, 
respectively. The results showed that compared with the 
initial settings, the optimized settings after the  fine-tuning 
process increased the QWK for the Word2Vec model 
from 0.73 to 0.76.

Table 2. Settings of the pre-trained Word2Vec model

Word2Vec model 
variables

Initial 
setting

Optimized 
setting 

after tuning 
procedure

Number of features 300 300
Minimum word count 40 20
Context 10 20
Algorithm 0 1
Time(s) 608 620
Used memory 
(Gigabytes)

3.55 1.15

Number of workers 4 6
QWK 0.73 0.76

The number of features is the size of the vector space 
specified as part of the pretrained GloVe and Word2Vec 
models. In this study, the number of features was kept to 
300, which can be considered a reasonably large value 
since it resulted in high accuracy in previous studies 
(Dong et al., 2017). The minimum word count for  training 
is the threshold for ignoring the words with fewer total 
frequencies in the context. Figure 2 shows the influence 
of minimum word count on QWK. 

Figure 2. Effect of minimum word count on QWK of 
Word2Vec model.

Initially, the minimum word count was set to 40. 
Increasing the minimum word count to 50 (i.e., the 
 highest possible value) resulted in a negligible increase 

in the model’s accuracy. However, changing it to lower 
values like 5 (as an extreme case) led to high variance 
and overfitting, leading to a lowered score from 0.741 to 
0.641. In addition, changing the minimum word count 
to 20 raised QWK to 0.755. Therefore, the  optimized 
 minimum word count was set to 20. Another  parameter 
in tuning Word2Vec is the window size. When the 
 window size increases, more context can be captured 
for  estimating the weights of words. However, large 
 window sizes can also decrease the quality of model 
training (Levy & Goldberg, 2014). Thus, we carefully 
increased the  window size of the initial setting from 10 
to 15, 20, and then 25. The optimal result was achieved 
when the  window size was set to 20. The algorithm in 
Table 2  represents CBOW (0) and skip-gram (1). The 
results showed that QWK for CBOW and skip-gram 
methods were 0.73 and 0.74, respectively. Therefore, 
only the  skip-gram algorithm was used for the rest of the 
 computations of the Word2Vec model. 

Time, used memory, and the number of workers in 
Table 2 represent the time and computational cost of the 
model using the set parameters. Generally, an increase 
in the number of workers results in a faster training 
process. In this study, we could increase the number of 
workers from 4 to 6. As Table 2 shows, the set  parameters 
for Word2Vec increased the model training time and 
decreased the used memory. 

3.2  Hyperparameter Tunning: GloVe 
Embedding 

Results of fined tunning parameters, including the number 
of components (features), number of threads, window, 
learning rate, and epochs for the pretrained GloVe 
model, are represented in Table 3. This tuning procedure 
increased the accuracy of the GloVe embedding AES 
model from 0.76 to 0.79 (i.e., a 3% increase in prediction 
accuracy). 

As Table 3 indicates, the initial setting for the number 
of components (i.e., 300 dimensions GloVe) resulted in the 
best accuracy for the model. The impact of window size on 
QWK in GloVe was similar to that of Word2Vec. GloVe 
had the highest QWK value when the window was set to 
20. Furthermore, as Figure 3 depicts, raising the learning 
rate from 0.05 to 0.15 is advantageous in terms of both 
computational cost and accuracy. Hence, the optimum 
learning rate was set at 0.15. Based on the computational 
cost, the time, the number of threads, and memory usage, 
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the results show that the optimized  settings for GloVe are 
more efficient than the initial  settings. 

Table 3. Settings for GloVe word embedding

GloVe model 
variables

Initial 
setting

Optimized setting after 
tuning procedure

Number of 
components

300 300

Window 10 20
Learning rate 0.05 0.15
Epochs 10 10
Time(s) 885 414
Number of 
threads

6 6

Used memory 
(Gigabytes)

3.59 1.51

QWK 0.76 0.79

Figure 3. The effect of learning rate on QWK for GloVe 
word embedding.

3.3 Models Performance
The results of different word embedding techniques 
incorporated into the LSTM model are summarized 
in Table 4. As Table 4 shows, the word embedding 
techniques improved the accuracy of the baseline LSTM 
model. More specifically, the word2Vec model before 
fine tuning resulted in the lowest improvement, and 
fine tunned GloVe resulted in the highest improvement 
(6%) in the model’s accuracy. The GloVe model before 
fine tuning and the Fine Tunned Word2Vec performed 
the same (QWK = 0.77) in increasing the accuracy of the 
baseline model.

Table 4. Accuracy of the LSTM model using word 
embeddings

Embedding techniques QWK Accuracy 
improvement (%)

LSTM (Baseline model 
without embedding 
technique) 

0.73 –

Word2Vec (skip-gram)
(before Fine Tuning)

0.75 2

GloVe (before Fine Tunning) 0.77 4
Fine Tuned Word2Vec 0.77 4
Fine Tuned Glove 0.79 6

4. Discussion
This study addressed the research question of whether 
fine-tuned modern word embedding techniques could 
impact the accuracy of deep learning AES models. The 
research question was introduced to understand whether 
the combination of recent advances in NLP techniques 
and deep learning algorithms can produce more accurate 
AES systems. In line with the result of various shared task 
studies (Dong et al., 2017; Zhao et al., 2017), this study 
indicated that pre-trained word embedding techniques 
could significantly improve the accuracy of AES neural 
network models. Results showed that when word 
embeddings are fine-tuned, they can not only improve the 
accuracy of the AES systems, but they also help increase 
the computational efficacy of the models in terms of 
training time. Inconsistent with Dong et al. (2017), our 
study showed a tradeoff between accuracy and efficacy 
in making decisions for the number of pre-trained 
dimensions (50 or 300). 

This study adds to the AES literature by showing 
the importance of word embedding techniques in the 
 accuracy of AES models. Our results showed that GloVe 
word embedding outperformed Word2Vec in improving 
the accuracy of AES systems. However, the inconsistency 
of this result with that of other studies (Pickard, 2020; 
Salehi, Cook, & Baldwin, 2015) shows that the  superiority 
of these two embedding techniques can depend on the 
task. For example, in essay tasks where the context of use 
is an important factor, GloVe can outperform Word2Vec. 
In contrast, in predicting the semantic compositionality 
of multiword expressions where the context of use is not 
a determining factor, Word2Vec showed superiority over 
GloVe embeddings (Pickard, 2020). Overall, our results 
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can guide future AES studies in selecting more efficient 
word representations for their models. Moreover, this 
study’s tuned parameters for word embeddings can be 
used as initial settings for future similar studies. 

Although the results of this study show the 
 performance of fine-tuned word embedding techniques 
in predicting essay scores, further studies are needed to 
investigate the accuracy of the AES systems when other 
advances in NLP, including tools that extract  linguistic 
features that are known to be important to writing  quality 
(Uto, Xie, & Ueno, 2020), are jointly used with word 
embedding  techniques as part of deep learning  models. 
Moreover, given the importance of context on essay tasks, 
future studies can also investigate the effect of other 
 contextualized word embedding techniques, such as BERT 
(Devlin et al., 2018), on the accuracy of AES  systems. 

This study used all eight essay prompts in the ASAP 
dataset. It is also possible to explore and compare the 
performance of the word embedding techniques for each 
prompt separately. This future investigation would allow 
researchers to see whether word embedding techniques 
perform differently on texts with different attributes. Given 
the variance in expectations across writing styles, future 
studies can compare the effect of different word embedding 
techniques on model performance for other writing genres, 
including persuasive, argumentative, and narrative texts.
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