
Leveraging Machine Learning Technology to 
Improve Accuracy and Efficiency of Identification of 

Enemy Item Pairs                                                                                                                               
Ian Micir1*, Kimberly Swygert1 and Jean D’Angelo2

1National Board of Medical Examiners, Philadelphia, PA 19104, USA; imicir@nbme.org, kswygert@nbme.org 
2American Osteopathic Association, Chicago, IL 60611-2864, USA; jdangelo@osteopathic.org

Abstract
The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which 
is that examinee responses to items are independent and no enemy items are included on the same forms. This paper 
documents the development and implementation of a C#-based application that uses Natural Language Processing (NLP) 
and Machine Learning (ML) techniques to produce prioritized predictions of item enemy statuses within a large item 
bank, which can then be followed by medical editor review of the prioritized predictions as part of an iterative process. An 
item bank of 4130 items from a large-scale healthcare specialist certification exam was used, in which it was assumed that 
many unidentified enemy pairs existed. For each pair of items, cosine similarities using TF-IDF weights were computed 
for the stem and answer text separately, with additional dichotomous classification variables added indicating content and 
existing enemy relationships. Each item pairs’ existing enemy status (enemy or non-enemy) was the dependent variable 
for the supervised ML model, the coefficients of which were then used to generate probabilities that a given pair of items 
were enemies. Medical editors reviewed prioritized lists of the actual versus predicted enemy relationships in an iterative 
fashion. Of the 700 untagged enemy item pairs reviewed, 666 were confirmed and tagged by editors as enemies (95.1% 
accuracy). Thus, this application was successful in allowing editors to efficiently identify the most egregious uncoded 
enemy item pairs in a large item bank. The ultimate goal of this research is to inform discussion about the potential for NLP 
and ML applications to greatly improve accuracy and efficiency of human expert work in test construction. 

*Author for correspondence

1.  Introduction
The goal of any assessment is to measure the degree to 
which an examinee understands the requisite knowledge, 
skills or abilities in a given domain or set of domains. 
Within that context, each item on an exam form is an 
opportunity for the test developer to obtain a small 
amount of information from a test-taker, which, when 
summed across many items, contributes to an increasingly 
accurate and reliable measurement of overall ability level. 
On a standard Multiple-Choice-Question (MCQ) based 
assessment, the capability to sum these opportunities to a 
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total score that is highly reliable and supported by validity 
evidence is dependent upon the items being independent 
of factors unrelated to the construct being measured and 
uncorrupted from various sources of construct-irrelevant 
variance. One common source of this type of corruption 
is item pre-knowledge, which is often equated to cheating 
in the test security literature. For this paper, however, the 
focus is on a specific type of non-security-related item 
pre-knowledge, known as enemy item relationships, that 
can exist within a test form as a potential and problematic 
source of construct-irrelevant variance.
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Enemy items are any pair of items that should not be 
placed on the same test form because of the potential to 
inflate a test-taker’s score and create adverse effects for 
reliability, validity evidence and/or content sampling. 
Item pairs can be deemed enemies for a variety of reasons; 
the most common ones are a high degree of item text 
similarity between the two items; a similar assessment 
point, such that knowing the answer to one would assure 
the examinee would know the answer to another; or 
cluing (aka cuing), where one item actually contains 
information about the correct answer to the other item 
(Woo and Gorham, 2019; Lane, Raymond and Haladyna, 
2016; NBME, 2021; Gierl, Lai, and Tanygin, 2021). Best 
practices for maintaining and reviewing item banks 
and ensuring accurate item coding or metadata should 
include a systematic review by content experts to ensure 
all enemy item pairs are identified. Following this step, 
enemies within an item bank can be “tagged” as such in 
the metadata, and any test construction algorithm used to 
create the forms can place a constraint on this metadata 
to avoid placing a pair of enemies on a test form. The 
complication arises, however, with the question of how 
to complete a comprehensive and systematic review to 
identify all enemies in an existing bank, especially large 
item banks that are continuously updated.

In a bank of 100 items, there are 4950 possible unique 
pairs of items, which might seem manageable for a 
manual review. Editors or subject matter experts can 
easily manually flag enemy items in a bank of this size 
by searching for other items in the same content areas or 
with similar metadata. However, in the world of larger-
scale assessments, a bank of 100 items is unrealistic and as 
bank size increases, the number of possible unique pairs 
increases quadratically. In a 1000-item bank, which might 
be standard for banks used to produce multiple logistic 
short testing forms in educational scenarios, there are 
499,500 pairs. In a 10,000-item bank – the minimum size 
required for any type of adaptive or on-the-fly testing or 
for developing lengthy linear forms with multiple content 
constraints that are used in high-stakes, high-security 
scenarios – the number swells to 49,995,000 possible 
pairings. In addition, while untagged item enemies might 
be identified via form review after logistic fixed forms are 
constructed, the lack of such review for any type of dynamic 
or adaptive test administration requires that the flagging 
of item enemies – and non-enemies – must be flawless for 
the entire bank prior to any exam administration. Thus, it 

very quickly becomes apparent that the crucial challenge 
with enemies is not the management of the known, but 
the identification of the unknown.

2.  The Rise of the Machines
As with many challenging big data scenarios, the 
automated enemy identification scenario for large item 
banks seems ripe for a solution based on elements of 
Artificial Intelligence (AI). The term AI predates the 
widespread adoption of other, more familiar forms of 
computer technology such as the internet, thanks to the 
seminal article by John McCarthy (1956) that defined 
it as “the science and engineering of making intelligent 
machines.” The evolution of AI has not run smoothly since 
its beginning, with several “AI Winters” occurring due to 
lack of interest, lack of funding or insufficient computing 
power and data mining techniques to support research 
(Taulli, 2019). The current age, however, is seeing a boom 
in both the recognition and widespread use of the data 
mining, modeling and statistical analysis components 
that comprise AI.

The conception of a general AI, where machines can 
be programmed to learn and execute extremely complex 
tasks by thinking very much like humans, has leapt 
ahead in the public’s imagination, helped by visionary 
forms of entertainment such as the films A.I. and Ex 
Machina (Semmler and Rose, 2017). However, the AI 
methodology that would be most useful for managing 
item banks is the less glamorous, but far more available, 
narrow AI, where the AI element is focused on a single, 
specific task (Kaplan and Haenlein, 2019). Test developers 
who choose this option should be guided by the same 
principles related to AI transparency, defensibility and 
accountability as any technology company that includes 
AI elements in their products (ATP, 2021). In addition, 
all test development tasks, even the parts of processes 
invisible to the test-taker, should contribute to the validity 
evidence for the use of the test scores as delineated in the 
Standards for Educational and Psychological Testing 
(AERA, 2018; ATP, 2021). These requirements are most 
easily supported with the use of a subtype of narrow AI 
that still relies heavily on “humans in the loop,” where 
the use of AI methodology is reserved only for tasks 
where the computer can do something faster or more 
accurately than humans, and human expertise is retained 
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for oversight, judgments and decision-making steps 
that still require human intelligence. This subtype can 
be observed with technologies such as automated essay 
scoring in high-stakes assessment, where human experts, 
though known to be imperfect, are still used as a check on 
extreme automated scores (Wang and von Davier, 2014). 
Likewise, any AI process used to identify enemy items in 
a large item bank would benefit, for validity reasons, from 
using human experts to render the final decisions.

As AI is a collection of modeling and statistical analysis 
techniques, the next topic to consider is the specific subset 
of narrow AI methodologies that would be most useful 
in the context of enemy item identification. Given that 
most MCQs are heavily text-based, an algorithm related 
to Natural Language Processing (NLP) will obviously be 
useful. NLP is a subfield of AI in which computers process 
and “understand” human language (Jurafsky and Martin, 
2009). Challenges in training computers to process and 
make judgments related to human language have been 
substantial, given that language can be ambiguous, 
change frequently, contain errors, be vague and have 
other inconsistencies that humans learn to decipher 
more readily than do computers (Taulli, 2019). However, 
progress in this field has moved from the Turing Test 
(1950), in which a computer’s use of language was linked 
to its perceived ability to think, to the world of today, 
where humans routinely communicate with Alexa, 
Siri, chatbots and other computer programs that use 
narrow AI to decipher and respond to written or spoken 
human language (Cho et al., 2019; Punjabi, Arsikere and 
Garimella, 2019).

For evaluating the language of test items, however, the 
situation is greatly simplified. Problematic scenarios such 
as inconsistent terminology, vague terms, grammatical 
errors and other issues common in regular speech are 
systematically removed from test items for high-stakes, 
standardized assessments (Paniagua, Swygert and 
Downing, 2019; NBME, 2021). Thus, test items are ideal 
testing grounds for NLP methods that can quickly parse 
standardized text, where straightforward comparisons 
of text similarity are easily computed and interpreted. 
Investigations into the potential for NLP applications for 
general management of large item banks have emerged 
in the last 15 years (Becker and Kao, 2009, 2013; Kao and 
Becker, 2010), with a handful of studies related specifically 
to the use of NLP methods for automated item enemy 

identification being published within the last two years 
(Peng, 2020; Gierl, Lai and Tanygin, 2021; Mao, Zhang 
and Clem, 2021).

This paper represents a substantial contribution to 
this brief but rapidly growing field, moving beyond the 
theoretical support for the use of NLP in enemy item 
pair management to the operational and verified use by 
humans in a pilot study applied to an existing item bank 
for a large-scale standardized assessment. This pilot study 
was conducted to demonstrate the utility of an application 
prototype that pairs NLP methodology with the Machine 
Learning (ML) algorithm of logistic regression to rapidly 
generate probabilities that item pairs are enemies, 
between all possible item pairs, in a large item bank. This 
prototype, informally known as Smokey, generates and 
prioritizes predicted enemy probabilities to allow medical 
editors to review outcomes alongside the actual item text 
and make the final judgments on whether enemy item 
pair flags should be added to or removed from the live 
item bank. This study also touches on the importance of 
developing AI applications that are intuitive and highly 
efficient, so that new software, using algorithms that might 
seem technologically daunting at first, can be introduced 
into well-established test development processes with 
minimal disruption and manageable training and change 
management procedures.

3.  Methods

3.1 Data
An item bank of 4130 items (representing 8,526,385 
possible pairs) from a large-scale healthcare specialist 
certification exam was used for this study. All items 
were single-best-answer multiple-choice questions with 
short vignettes, written and edited to specific standards 
in terms of phrasing and sentence structure (NBME, 
2021). The items were developed to satisfy a detailed test 
construction blueprint, where the constructs of interest 
represented by the blueprint’s content areas involved 
specialized knowledge in a healthcare field that contains 
both patient-facing and administrative tasks. Item 
structure ranged from short presentations of facts, with 
a lead-in asking the test-taker to recall definitions, to 
longer vignettes that required the test-takers to synthesize 
information, some of which included patient scenarios.
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This item bank was chosen not only because the items 
were standardized and relatively short, but also because it 
was anticipated, due to previous methods used for bank 
assembly and review, that there were many enemy item 
pairs within the bank that were not tagged as enemies, 
despite potential substantial text overlap. All item pairs 
that were tagged as enemies had been reviewed and 
tagged by a human reviewer, but all remaining item pairs 
not tagged as enemies (the vast majority of the bank) 
might have never been reviewed or might have been 
reviewed and determined not to be enemies. Not only 
were there many item pairs not tagged as enemies, but an 
unknown number of those had never been evaluated as to 
whether they were enemies. The initial dataset included 
the full text of the item stem (including facts/vignette and 
lead-in) and full option set, including the key. Prior to 
implementing any NLP methodology, however, the text 
required preprocessing.

3.2 Text Preprocessing
Text preprocessing is an essential step in most NLP work. 
It involves the act of converting the much nuanced system 
of human grammar into a more standardized, computer-
friendly version of itself. The steps include lowercasing, 
punctuation removal, stop-word removal (articles and 
other non-impact words like “if,” “and,” “to,” etc.) and 
stemming. Lowercasing and punctuation removal are 
fairly straightforward, but the list of stop-words can vary 
greatly based on the overall contents of the text in a given 
analysis. The items for this pilot study were written in 
extremely standardized fashion, typically featuring the 
phrase, “Which of the following,” in the lead-in. Thus, 
the word “following,” which could be a meaningful word 
in other contexts, was added to the list of stop-words to 
be removed. This is a small but useful example of how 
even a preliminary step like text preprocessing is not 
one-size-fits-all; even the most routine elements of NLP 
may require iterations of revisions to better fit the data 
available or task at hand.

Stemming and lemmatization are similar steps, with 
stemming being the simplistic, less precise approach. 
In both processes, the end goal is to extract the root 
word of a given term, such that injects, injected, 
injection, injecting, etc. all register as the same root 
word, allowing the computer to recognize that they are 
the same. Stemming is a fairly simplistic approach that 
removes letters from a term until it reaches a root term. 

Lemmatization incorporates the broader context of a 
language to provide a simplified version of an actual term. 
Lemmatization would turn the “inject-” words above 
into “inject,” whereas, stemming would result in “injec.” 
Lemmatization produces a more intelligible output at the 
expense of speed, as it is more computationally taxing. 
If the data for this pilot study were dealing with social 
media text, or comparing the prose in novels written by 
different authors, lemmatization would be optimal and 
would most likely provide significantly better results. 
However, given the highly standardized terminology and 
sentence structure of the pilot test items, speed was the 
primary factor, and the Porter stemmer method (Porter, 
1980) was used. Once items were transformed during 
preprocessing, further work could commence.

3.3 Item Text as Vectors in Space
Item text can be considered part of a semantic space in 
which words are vectors and the similarity of an item 
as an N-dimensional vector with another item can be 
represented mathematically via vector comparison 
(Jurafsky and Martin, 2009). To compare two items 
represented as vectors, the cosine can be used as a 
measure of distance between them, where a cosine  
value = 1 would indicate two items that are identical  
across all words retained after preprocessing, and a 
cosine value = 0 would indicate two items with no 
words in common. This cosine value is known as the 
cosine similarity index and is one of the best-established 
measures for evaluating semantic similarity (Kusner et 
al., 2015; Sitikhu et al., 2020). However, not all words are 
created equal for the purpose of judging semantic space 
similarity, and this is where a weighting measure such as 
the tf-idf (term frequency-inverse document frequency) 
weight can be useful.

The first step in estimating the tf-idf weight is 
to establish a vocabulary of all unique terms (post-
preprocessing). The number of times a term is used within 
a document (in this case, an item) is the tf, and the idf 
represents a weight that assigns higher value to rare terms 
in the total vocabulary (in this case, all unique words 
from all items), based on the number of documents that 
contain one or more uses of the term. The use of the tf-idf 
weighting is crucial in assessment scenarios because, 
within the framework of highly standardized test items, 
there are often terms that are used across many items in 
the bank that are not removed during preprocessing due 
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to their content-relevant meaning. For example, if a test 
contains items that include patient vignettes, “man” might 
appear in roughly half of these items. While this term may 
be very relevant for a given item, it would not be of high 
value as an indicator of similarity between items in that 
bank. Conversely, highly specific medical terms that refer 
to diagnoses and symptoms are more likely to be rare, 
even on an exam focused on such constructs, and should 
be weighted more highly as an indicator of similarity. 
Using the item bank as the corpus, a tf-idf weighted 
cosine similarity can be calculated for any pair of items, 
with values ranging from 1 to 0; the higher the value of 
the cosine similarity, the more similar the items are, with 
rare terms weighted more heavily in quantifying that 
similarity than common terms.

3.4 � Application Development for NLP and 
ML Elements

Smokey was designed in C# with a streamlined graphic 
user interface that allowed medical editors to select the 
specific item bank of 4130 items for this study, along with 
item information from that bank as follows: Stem text, 
correct option text and selected content codes. While the 
set of specific content codes and their descriptions that 
were used for this pilot study cannot be published here, 
they can be considered representative of the data that 
would be commonly used for coding medical factual or 
vignette-based items.

After the dataset was assembled, the preprocessing 
routine was conducted. Once the final set of text segments 
was available for use, Smokey was used to run two sets of 
analyses: 1. A set of NLP estimations (the computation of 
the tf-idf weighted cosine similarity between each pair of 
items) and 2. An ML analysis using the similarity indices 
and item content coding to predict a final similarity 
indication. These are described below.

NLP Calculations
The Smokey processing began with iteration through 
each unique pair of items where, for each pair, an array 
was generated for each item of length n, where n was 
the number of unique terms used across either of the 
items remaining after preprocessing. Each position in 
the array was then filled in with the tf-idf value of the 
corresponding term relative to the inverse of that item’s 
term frequencies. For the purposes of this study, two 
tf-idf cosine similarities were generated between each 

pair of items: one for the item stem text (CS_IS), and one 
for the correct option text (CS_OT).

In the next step of processing, Smokey generated 
a dichotomous variable that represented agreement of 
the primary content codes between each pair of items, 
referred to here as variable CC1. For example, if a pair 
of items had been assigned the same content code for the 
primary content category, CC1 was assigned a 1 for that 
specific pair of items; if the codes were different, CC1 
was assigned a 0. Finally, Smokey used the existing item 
enemy flags in the bank to generate a dichotomous enemy 
variable, EV, for each pair of items. If two items were 
already coded as enemies of one another in the bank, 
EV was set to 1; if there was no such code in the bank 
for this pair, EV was set to 0. As noted above, the vast 
majority of the item pairs in the bank had an EV = 0, but 
it was anticipated that many of these were genuine enemy 
pairs that had not been tagged during earlier manual  
reviews.

ML Estimations
The model chosen for this step was the iterative reweighted 
least squares logistic regression within the Accord 
Framework (an open-source .NET library for Machine 
Learning). A logistic regression was chosen, as the model 
was to be trained on data where the outcome variable 
was binary. The independent variables for each item pair 
were CS_IS, CS_OT and the dichotomous content code 
agreement value, CC1. The dependent value was EV, the 
dichotomous enemy indicator as reflected by the existing 
bank coding.

In ML scenarios with regression models, the dataset 
is often split into training and test datasets. The split is 
typically 80%-20% training to test but can be 50%-50%. 
However, in this scenario, the fact that it was expected 
that many of the item pairs were incorrectly tagged 
as non-enemies was a concern. It was not a given that 
any random subset of the bank would produce enough 
examples of accurately-tagged enemies and non-enemies 
to be useful as a training set. For this and other practical 
reasons, the decision was made to use the entire dataset 
for the training of the logistic model, to train Smokey on 
the level of semantic similarity to be found with enemy 
item pairs, and then to repeat the same regression over 
multiple runs, with the enemy item tags in the bank 
updated between each run with the enemy item pairs 
verified by editors during the previous iteration(s). This 
method was sufficient for the pilot at hand because the 
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pilot was intended to test whether Smokey could generate 
output that was easily interpretable to editors and whether 
editors could in turn efficiently make decisions to update 
the bank between iterations of regressions. In addition, 
the goal was to generate regression coefficients that were 
fit exactly to this one item bank at this point in time, with 
no assumptions made that the regression coefficients 
would be generalizable to any other item bank. The initial 
version of Smokey did not include a method to record 
the coefficient values for each variable. Smokey works 
with live (as opposed to static) data pulled directly from 
databases at runtime; because the data have since changed 
considerably, we are unable to retrieve the point-in-time 
coefficients. This functionality has since been added to 
Smokey and will be made available should we publish 
follow-up studies using more clinically complex vignettes 
and diverse metadata.

Thus, to start, the entire bank was used to estimate 
coefficients for the CS_IS, CS_OT and CC1 values, where 
those were generated using the existing EV values as the 
dependent variable. That dependent variable EV was then 
removed from the equation and the coefficients were 
applied to the same three predictor variables for the entire 
bank to generate, for each item pair, a Smokey value for an 
estimated EV outcome, representing the probability on a 0 
to 1 scale that the two items were enemies. As the ultimate 
goal was to support editors in making binary enemy/non-
enemy decisions, the decision was made to choose a low 
baseline threshold to classify an item pair as enemies. All 
pairs with probabilities > 0.05 were classified as predicted 
enemies, while those below the threshold were predicted 

to be non-enemies (empirical results from earlier test 
runs of the application suggested that this threshold 
would be sufficient for identifying a high proportion of 
the untagged enemies). The results for each pair of items 
could be classified into one of the four categories shown 
in Table 1. Because the 0.05 threshold was somewhat 
arbitrary, we note below for our classifications that the 
Smokey outcomes are probable rather than definitively 
known.

After the first set of probabilities and decision 
classifications was generated, the application guided 
editors to a new screen from which they could view the 
decision classifications along with full pre-processing item 
text for each pair of items. Results were displayed with the 
most extreme probable false positive values at the top of 
the screen and the most extreme probable false negatives 
at the bottom. These two categories were deemed the 
most crucial for editorial review, as the assumption was 
made that no review was needed for outcomes where the 
Smokey decision classification agreed with the enemy 
item codes.

For the review stage, editors were instructed to 
compare the item text to the Smokey decision and use 
their professional judgment to confirm or deny the 
decision classification for item pairs. If the decision 
was a probable false positive, but the editor decided the 
item pairs were in fact enemies, they could label them as 
either form enemies (not to appear on the same test) or 
subform enemies (can only appear on the same test if in 
different non-reviewable subforms). Editors reviewed the 
items in batches and were allowed to work at their own 

Smokey outcome (based on 
0.05 threshold) Actual bank flag value Smokey decision classification

Probable Enemies Enemies Probable True Positive – bank status of this item pair 
coded as enemies is probably correct

Probable Enemies Not coded as enemies Probable False Positive – bank status of this item pair not 
coded as enemies is probably incorrect

Probable Non-enemies Enemies Probable False Negative – bank status of this item pair 
coded as enemies is probably incorrect

Probable Non-enemies Not coded as enemies Probable True Negative – bank status of this item pair not 
coded as enemies is probably correct

Table 1. Decision classifications from Smokey
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pace. Once all pairs in a review subset were reviewed, the 
medical editors’ decisions were used to update enemy flag 
values and create a new item bank, after which the entire 
bank was used to generate a new set of logistic regression 
coefficients, generating a new set of probabilities. As more 
pairs underwent medical editor review, the expectation 
was that the model would continue to produce 
progressively more accurate results, as it would now have 
more accurate coding of enemies and non-enemies from 
which to learn.

Additional Interface Elements
As editors were provided the prioritized item enemy 
decision classifications for each pair of items, the full 
item text for both items appeared on the screen, enabling 
editors to review each pair in an efficient manner while 
referring to the full preprocessing text for each item. 

Smokey also included an option for editors to mark an 
item pair for review by a peer, flag the pair for discussion 
or add notes to a given pair for future reviewers. Marking 
an item for review was essentially a request for a second 
opinion, so that a second editor could render their 
judgement of the pair. The interface also provided a field 
for the initial editor to enter open-text notes to explain 
their hesitation regarding the pair’s enemy status. Finally, 
Smokey captured the time that each editor spent on a 
given pair, across all editorial review, so that the total 
human review time needed for the pilot analyses could be 
totaled once all work was completed.

4. Results
The medical editors performed seven iterations of review. 
There were many more probable false positives (Smokey 

False Positives

Run Exam Enemy Subform Enemy Not Enemy Review Total

1 100 0 0 0 100

2 73 27 0 0 100

3 84 16 0 0 100

4 91 9 0 0 100

5 97 3 0 0 100

6 79 21 0 0 100

7 66 0 23 11 100

Total 590 76 23 11 700

False Negatives

Run Exam Enemy Subform Enemy Not Enemy Review Total

1 7 3 14 1 25

2 7 6 10 0 23

3 12 22 12 0 46

4 33 15 4 0 52

5 0 0 0 0 0

6 0 0 0 0 0

7 0 0 0 0 0

TOTAL 59 46 40 1 146

Table 2. Detailed results of iterative review of false positives and false negatives 
across the seven Smokey runs
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indicating that an item pair should be enemies, but the 
pair was not tagged as enemies in the bank) reviewed 
than probable false negatives (tagged as enemies in the 
bank, but not predicted by Smokey to be enemies). Of the 
700 total probable false positive values reviewed, 666 were 
confirmed as enemies after medical editor review (95.1% 
accuracy within that subgroup of pairs) and 40 of 146 
probable false negatives were confirmed as non-enemies 
by editorial review. This confirmed the initial suspicion 
that the bank contained many item pairs that were in 
fact enemies but had not been tagged as such during 
previous manual review steps. The results of the review 
process by iteration are shown in Table 2. It is notable that 
disagreement between Smokey and editorial review did 
not occur until the seventh iteration. Ideally, we would 
have continued the review process for several more 
iterations to better capture the point where disagreement 
became so prevalent that the results no longer justified 
the effort required. Unfortunately, this initial pilot study 
was limited by staff availability and other operational 
deadlines, so only seven iterations were possible given 
those constraints.

The sensitivity, specificity and precision values 
are shown in Table 3. Sensitivity was calculated as the 
percentage of total pairs correctly identified by Smokey as 
enemies, and specificity was the percentage of total pairs 
correctly identified by Smokey as non-enemies. By the 
seventh run, both values were higher than 0.70. Precision 
was calculated as the ratio of true enemies (probable 

true positives) to total predicted enemies (probable true 
positives + probable false positives). It should be noted, 
however, that while sensitivity, specificity and precision are 
typical metrics used to measure ML model performance 
(hence their inclusion), their use here is based on a fairly 
arbitrary baseline threshold (0.05) to consider items 
enemies. The operational priority is to ensure that editors 
are provided with a sufficient number of pairs for review, 
so in our case, the actual numeric value of the threshold 
(which affects sensitivity, specificity and precision) is 
largely irrelevant, as long as the model yields a sufficient 
number of pairs for editorial review.

During debriefing, the editors indicated that they 
found the Smokey application to be user-friendly and 
intuitive. For this particular item bank, most probable 
false positives reviewed across the seven runs were 
quickly determined to be actual enemies, with no second 
review needed. The editors more often chose to flag the 
false negatives for review, as this sometimes necessitated 
a discussion of why two items that had little or no text 
in common had been originally tagged in the bank 
as enemies by previous editors. The entire process of 
reviewing the Smokey outcomes and making decisions 
across all seven iterations took less than eight hours.

5. Conclusion
The goal of the development of this application and 
the pilot analyses was to inform discussion among test 

Run F+ F- T+ T- Sensitivity Precision Specificity

1 889 443 96 8524957 0.17811 0.09746 0.9999

2 1055 404 221 8524705 0.3536 0.1732 0.99988

3 1174 380 355 8524496 0.46853 0.222 0.99986

4 1278 360 443 8524304 0.55168 0.25741 0.99985

5 1373 346 553 8524113 0.61513 0.28712 0.99984

6 1459 335 664 8523927 0.66466 0.31276 0.99983

7 1608 327 772 8523678 0.70246 0.32437 0.99981

Table 3. Sensitivity, precision and specificity results by Smokey run



Leveraging Machine Learning Technology to Improve Accuracy and Efficiency of Identification of Enemy Item Pairs 

Vol 23(Special Issue 1) | 2022 | http://jattjournal.net/� Journal of Applied Testing Technology38

development professionals about the potential for a narrow 
AI application, using NLP and ML elements, to greatly 
improve accuracy and efficiency of human expert work, 
like enemy item identification, that is commonly needed 
to support high-quality test construction. Although the 
results presented here were based on a prototype and 
deployed within a short time period for a single exam, 
we consider them to be tremendously encouraging in 
this regard. The use of Smokey for these pilot data was 
successful in drastically reducing the time needed for 
human reviewers to identify uncoded enemy item pairs 
in a large item bank and make the necessary changes to 
item coding. The medical editors found the process easy 
to follow, and the utility of this kind of application was 
clearly shown, as fewer than eight hours of staff time were 
needed to review 846 prioritized item pairs and determine 
that coding changes needed to be made to enemy codes 
for 740 of them. This was reassuring, as Smokey was 
designed, from the start, with the end-user experience in 
mind.

One unexpected benefit was that, in addition to 
providing empirical data for the clear-cut examples of 
enemy items with calculations of semantic similarities 
and predictions based on the logistic regression, the 
experience also inspired editors to collaborate about 
what sort of enemies Smokey was best at identifying and 
what sort of enemies were not likely to be identified via 
NLP technology. This resulted in discussions on what 
elements of item text seemed most useful in determining 
whether two items are enemies and how the definition 
of an enemy item pair should be expanded if there are 
examples of enemy item pairs with relatively little text 
in common. While enemies are not hard to understand 
conceptually, not all distinctions between enemies and 
non-enemies are clear in practice, especially if synonyms 
or different phrasing can be used to describe the same 
assessment point. The use of Smokey’s iterative review 
process revealed that two equally qualified human 
experts could have different opinions on whether the 
information that could be gleaned from one item would 
be enough to influence a test-taker’s response to another 
item, especially as the semantic space between them grew 
larger. For this reason, despite the success of Smokey for 
this pilot study, the authors view the development of this 
kind of application, and the utility of NLP methods in 
general, to be an important step in improving efficiency 
and accuracy in enemy item identification. The additional 

challenge is developing a more articulate, specific and 
less mysterious definition of enemies that can be applied 
across all items.

One additional constraint that should be 
acknowledged is that the application of any software 
of this kind requires a training and implementation 
process, so that human experts who are used to being 
the sole decision-makers can become comfortable 
interacting with, confirming or rejecting judgments made 
by a system incorporating AI elements. In the case of this 
pilot, the medical editors were appreciative of the support 
that Smokey provided, and it was immediately apparent 
to them that the incorporation of this application would 
allow them to accomplish a routine task much more 
quickly and efficiently. It would not be wise for other 
researchers, however, to assume that all such human 
experts will be as appreciative and accepting at the 
introduction of a narrow AI application that replaces 
the need for their manual efforts, in part or in whole. 
The authors found during the pilot training that it was 
helpful to restate what narrow AI can and cannot do, 
and to consistently frame the development work as one 
in which the AI application is intended to support the 
human work by assuming only the small subset of tasks 
which computers can do faster and more accurately than 
humans, thus freeing up cognitive space and time for the 
humans to focus on what they can do best.

The pilot item bank, while sufficiently large for NLP 
estimations, did set limitations on the generalizability 
of the results. As noted above, given the expectation 
that many enemies were not classified, the decision was 
made not to split the dataset for test and training, as 
would normally be done, but instead to follow an iterative 
process. The content classification code used in the 
regressions was not necessarily independent of the actual 
text used in the items, which was unavoidable due to the 
method used for content coding, and this correlation of 
the cosine similarity indices with the dichotomous content 
code could have led to artificial overweighting in the final 
model. The items were often relatively short, factual items 
that tested recall, and the highly standardized language 
used in some content areas made Smokey’s tasks relatively 
easy. It remains to be seen if the accuracy and time metrics 
shown here would be replicated for a dataset composed 
of lengthier items with less standardized descriptions of 
patient scenarios. As the level of complexity in the subject 
matter, vocabulary and sentence structure increases in 
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test items, so does the need for more human cognitive 
effort to define the gray areas and amorphous boundaries 
between enemy item pairs.

The feedback, while unanimously positive, was 
gathered informally as well. While the limited scope and 
deployment within a rigid operational timeline prevented 
a formal survey of the editorial staff, we plan to initiate 
this kind of effort for all studies going forward, to ensure 
that we capture the best feedback from the users on 
aspects such as the ease of navigation and the perceived 
value added by the application.

In addition, further enhancement and training, 
the use of alternative NLP techniques such as word 
embeddings and the inclusion of larger corpora would 
be useful to enhance an application like Smokey for the 
more subtle scenarios, allowing the models to correctly 
flag two items as enemies when the items do not have 
exact words in common, thus cuing test-takers who saw 
both items. Another capability that could be added to 
the application would be the calculation of agreement 
statistics between editors who reviewed the same item 
pairs, so that a study could be done to evaluate rate of 
agreement between editors for all item pairs falling into 
both probable false positive and probable false negative 
classifications. Nonetheless, the results of this pilot are 
incredibly encouraging, and future work is planned to 
evaluate larger datasets with lengthier, more complex 
items.
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