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Abstract
A model of cognition and a construct, such as a concept map (Wilson, 2009), is critical in designing assessments of that 
construct. The Knowledge, Skills and Abilities (KSAs) in the construct must be put to use in order to assess what test 
takers know and can do (National Research Council, 2001). In order to validate a construct map for graphic literacy, a 
model of cognitive processes involving exerted cognitive effort and the mitigating effects of KSAs is explored. Data from 
pupillometry was used to quantify cognitive effort so that the KSA-mitigated model of cognition could be validated along 
with the construct map of cognitive processes related to graphic literacy and its assessment. 

1.  Introduction
One shift in the discussion of the validity of assessments 
over the last few years has been a greater emphasis 
in eliciting evidence of the cognitive processes of test 
takers and how those processes relate to the claims that 
the assessment makes about test takers. The Standards 
for Educational and Psychological Testing (American 
Educational Research Association [AERA], American 
Psychological Association [APA], and National 
Council for Measurement in Education [NCME], 2014) 
specifically call for this evidence. In fact, they specifically 
mention eye movements as a relevant source of validity 
for some constructs (p. 15). This paper provides a method 
to systematically examine the cognition vertex through 
the use of eye tracking data, particularly the Index of 
Cognitive Activity (ICA) (Marshall, 2002; Marshall, 
2000), which relies on pupillometry to determine 
the presence or absence of cognitive load that an 
individual is experiencing at specific points in time. This 
physiological measure provides information relevant to 
the cognition vertex that can be compared to observable 
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behaviours (answers) and interpretations (overall score) 
of individuals.

1.1 � Need for Evidence of Cognitive 
Processes for Assessment for WorkKeys 
Graphic Literacy

Beginning in 2015, the ACT WorkKeys Locating 
Information assessment underwent major revisions. The 
revision addressed construct validity and revised the 
construct to better align with the claims about what skills in 
graphic literacy were needed based on job profiling (ACT, 
2019) and changes to the view of graphic literacy since the 
test was originally developed in the mid-1990s. Graphic 
literacy was defined as the ability to find, summarize, 
compare, make decisions and communicate using graphic 
sources such as graphs, charts, tables, process diagrams, 
flow charts, forms and digital dashboards. These revisions 
required the collection of evidence of cognitive processes 
to demonstrate that the proposed construct framework 
matched what test takers would do to complete tasks. The 
first validation phase began with think-alouds (Thomas 
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and Langenfeld, 2017a; Langenfeld, Thomas, and Gao, 
2019). The think-aloud research presented evidence of 
the cognitive processes and the proposed framework. 

The new framework greatly differed from the original 
construct which led to renaming the assessment to focus 
on the overall construct of graphic literacy rather than 
a specific type of one-step skill (Locating Information). 
However, we still needed to gather more evidence of the 
cognitive processes in general and the relative difficulty of 
the skills. To meet those goals, we turned to eye tracking 
(Thomas and Langenfeld, 2019; Langenfeld, Thomas, 
Zhu, and Morris, 2020) and pupillometry which will be 
the focus of this paper.

1.2 � Eyetracking and Pupillometry as a 
Measure of Cognitive Effort

Cognition is the “black box” of the assessment triangle 
(National Research Council [NRC], 2001). Think-alouds 
give insight into what students think and do; however, 
this process provides significantly less information at the 
extremes of mental effort. For tasks that the test taker has 
automaticity, they offer few, if any, statements of what they 
are doing because the process does not require thought 
(Garner, 1987). For example, if you ask someone who has 
mastered their multiplication facts what 8 times 12 is, 
they will simply recall 96. However, if you ask someone 
who is first learning multiplication, they may think aloud 
that 2 times 8 is 16. Then add that 10 times 8 is 80. Finally, 
they add them together to get 96. On the other hand, 
extremely complicated tasks tend to overload the working 
memory of test takers and they stop using mental energy 
to verbalize what they are doing. (Someren, Barnard, and 
Sandberg, 1994; Ericsson and Simon, 1980). Additionally, 
thinkalouds rely on self-report of cognitive effort which 
can be highly subjective (Someren et al., 1994) and 
influenced by self-efficacy (Beauchamp, 2016). During the 
initial think aloud research, test takers would sometimes 
state “that is too hard” or “I don’t know nothing about 
science” and then state they were going to guess and move 
on (Thomas and Langenfeld, 2017a; Langenfeld et al., 
2019; ACT, 2019). Therefore, a way to objectively quantify 
cognitive effort was needed.

Eye tracking software provides an unobtrusive way to 
gather observations about cognition. Data can be acquired 

while an individual takes a computer-based test with no 
extra equipment for the test taker. An infrared sensor bar 
sits below the monitor recording eye movements, pupil 
measurements and blinks without interfering with the 
testing process. This is an improvement over thinkalouds 
as the normal test taking processes and cognition are 
not potentially altered by trying to articulate what the 
individual is doing (Someren et al., 1994; Ericsson and 
Simon, 1980). Unlike other physiological measurements 
such as Functional Near-infrared Spectroscopy (FNIR) 
or Galvanic Skin Response (GSR) or early eye tracking 
studies (Hess and Polt, 1964; Beatty and Kahneman, 1966; 
Kahneman and Beatty, 1966), no bulky gear is required to 
be worn by the individual (Ayaz, Shewokis, Bunce, and 
Onaral, 2011; Manseta et al., 2011). For paper tests, new 
eye tracking goggles are lightweight and allow completely 
free movements (Sensori Motoric Instruments [SMI], 
2016; Tobii Pro, 2016).

Using eye tracking software, several important eye 
movements are measured, including fixations, saccades 
and blinks. Fixations are periods of time when the focus 
of the eye remains within a small area. These have been 
associated with periods of cognition and processing. 
Saccades are rapid movements from one area in the field 
of vision to another. They are generally associated with 
lower levels of cognition (Just, Carpenter, and Woolley, 
1982; Andrzejewska and Stolińska, 2016). Blinks are also 
measured. Blinking and the rate of blinking have been 
studied for their relationship to cognitive effort, fatigue, 
and response to light (Poole and Ball, 2006; Andrzejewska 
and Stolińska, 2016; Tanaka and Yamaoka, 1993). Their 
findings have been inconclusive; as a result, blinks will 
not be used in this analysis.

Pupillometry has been used to measure cognitive 
effort for over 100 years (Schiff, 1875; Beatty and Lucero-
Wagoner, 2000). The pupil dilates autonomically based on 
the amount of cognitive effort (Beatty, 1982; Ahern and 
Beatty, 1979). Early work used the diameter of the pupil 
as the primary measurement (Kahneman and Beatty, 
1966; Beatty and Kahneman, 1966; Beatty, 1982). This 
was primarily due to limitations in the technology. For 
example, seminal work by Beatty and Kahneman relied 
on using cameras set to take pictures of the eye every 0.5 
seconds in a darkened room. Because of the long time 
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between data collection, this early research relied on the 
diameter of the pupil as a measure of cognitive effort. This 
leads to several issues. First, pupil diameter does have 
variability among individuals (Aminihajibashi, Hagen, 
Foldal, Laeng, and Espeseth, 2019; Marshall, 2002). 
Second, the pupil constricts in response to low light 
(Beatty and Lucero-Wagoner, 2000). Consequently, early 
research that relied on taking pictures of the pupil and 
eye and then measuring the diameter of the pupil could 
be adversely affected by changes in light as the task was 
displayed on a screen. Later work examined the percent 
change in pupil diameter which attempted to correct for 
the variability in individual pupil size and ambient light in 
the room (Bailey and Iqbal, 2008).

1.2.1 The Index of Cognitive Activity (ICA)
Modern pupillometry has been greatly aided by the 
improvements in technology. The equipment used for this 
study, the SMI red-N, collects data at 60 Hz (SMI, 2016). 
With the greater resolution of 60 or more measurements 
per second depending on the hardware and software 
used, the measurements can move from actual pupil 
diameter to speed and acceleration of pupil diameter 
change. The dilation caused by increased cognitive effort 
is a small magnitude rapid reflex (Beatty, 1982; Ahern and 
Beatty, 1979) and the greater the speed and acceleration 
of that change the greater the cognitive effort (Marshal 
2000, 2002, 2007). This also removes the confounding 
variable of individual pupil size as the rate of change is 
independent of the resting pupil size at the light levels 
of the experiment (Marshall, 2002). Moreover, the rate 
of change and the acceleration of that change are both 
more sensitive to cognitive exertion than simple percent 
change from previous measurement. The constriction 
reflex to light is a larger magnitude but slower reflex 
than the dilation effect (Marshall, 2000; Marshall, 
2002). The Index of Cognitive Activity (ICA) software 
developed by Marshall uses Fourier transformations to 
eliminate the constriction effects and changes in lighting 
while computing the ICA value which measures the 
instantaneous cognitive load from one measurement to 
the next (Marshall, 2007; Marshall, Davis, and Knust, 2004; 
Marshall, 2000). The software calculates the percentage of 
time that an individual engages in cognitive activity above 

the threshold for each measurement recorded by the eye 
tracking software. Therefore, instantaneous cognitive load 
can be measured for thousands of intervals in a session 
using normal eye tracking software and equipment with 
sample rates of 60-500 Hz. In addition to instantaneous 
cognitive load during an eye movement, the average 
cognitive load for a task can be calculated as well. ICA 
does not require multiple trials like pupillary response 
techniques (Marshall, 2007). ICA has been shown to be 
reliable to justify decisions about cognitive workload and 
overload conditions for the military, air traffic controllers 
and the National Traffic Safety Bureau (Marshall, 2007; 
Boehm-Davis, Gray, Adelman, Marshall, and Pozos, 
2003; Morrison, Marshall, Kelly, and Moore, 1997; Bartels 
and Marshall, 2006; Veltman and Jansen, 2006; Marshall, 
Pleydall-Pearce, and Dickson, 2003). 

The ICA is calculated based on measurements collected 
by the eye tracking equipment for each measurement 
and calculated independently for each eye (EyeTracking, 
Inc, 2014). Since the dilation of each eye is connected to 
instantaneous cognitive load in specific parts of the brain 
(Marshall, 2002), it is normal for the dilation processes to 
be different in each eye. The average of the ICA for the left 
and right eye is used for the instantaneous cognitive load. 
The maximum value for the ICA is one and a value of zero 
indicates no cognitive effort beyond the calibration point 
which is based on focusing on dots on the screen (SMI, 
2016). Additionally, since the assessment used only items 
with no moving graphics, the changes in lighting were 
minimal and accounted for by the software.

2  �Models of Cognition and Effort
Based on the think aloud study (Thomas and Langenfeld, 
2017a), it was apparent that at some point test takers would 
decide that they would not be able to solve a problem and 
would not exert significant mental effort. For some, it was 
the topic of the task (specifically, science). For others, it 
was unfamiliarity or complexity of the graphic. Sometimes, 
the totality of the task overwhelmed the test taker (Thomas 
and Langenfeld, 2017a; Thomas and Langenfeld, 2018). 
This coincides with others work on effortful or solution 
behaviours on assessments (Wise, 2017; Wise, Pastor, and 
Kong, 2009; Wise and Smith, 2011).
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a.  Previous Models 
Young and Stanton (2001) described a model of cognition 
using the term mental workload of a task. It represents the 
total resources needed to meet performance criteria, such 
as completing a task and selecting the correct answer on 
an assessment. This mental workload is influenced by task 
demands, external supports and past experiences. For 
example, an assessment task that requires manipulation 
of large amounts of data may have a high task demand. 
However, if the individual is supplied with a task support 
such as a calculator, spreadsheet software or formula sheet, 
there would be external supports that would decrease the 
mental workload. They mention previous experience as 
a factor but do not flesh out how that specifically relates 
to Knowledge, Skills, and Abilities (KSAs) of individuals 
trying to complete a performance task. 

Stephen Wise has also written about models 
of cognition and effort related to effortful solution 
behaviours (Wise and Demars, 2010). In Wise and Smith 
(2011), they describe resource demands of a task as a 
function of familiarity of the scenario, the amount of 
information that must be processed in working memory 
and the linguistic demands of the task. Later work (Wise, 
2017; Wise and Kuhfeld, 2020) suggests that test takers 
will evaluate whether or not to exert significant effort 
using solution behaviours or instead use some non-
solution behaviour such as guessing or skipping a task 
based on a self-assessment of the likelihood of success. 

Other researchers (Blessing and Ross, 1996; Hmelo-
Silver and Pfeffer, 2004) include task format, task 
complexity and time pressure as factors that impact 
mental load, mental effort and performance than can be 
predicted using task and subject characteristics.

b. A New Model: KSA-Mitigated Cognitive Effort 
i.Total Cognitive Effort Required for a Task (TCERT)
The Total Cognitive Effort Required for Task (TCERT) 
encompasses many of the ideas mentioned previously. 
The cognitive complexity of the task is one component. 
In assessment situations, the time pressure and speedness 
or perceived speedness, can add to the effort required 
(Blessing and Ross, 1996). The amount of information 
that must be processed to complete the task also 
contributes. The complexity of the task format, such as 
the graphic used (Friel, Curcio, and Bright, 2001; Bryant 

and Somerville, 1986; Friel and Bright, 1996) or question 
format such as free response or multiple choice (Martinez 
and Katz, 1995) will contribute to the cognitive effort 
required. Different tasks or items will have different 
TCERT values. Theoretically, tasks that are deemed easier 
or less complex based on the construct and task specifics 
should have lower TCERT than more difficult constructs 
as shown in Figure 1. We define cognitive effort as the 
summation of instantaneous cognitive load (hereafter 
cognitive load) over time. A single event contributes 
cognitive effort by integrating the cognitive load over 
the time that it was exerted. The Total Cognitive Effort 
(TCE) is the summation of the cognitive efforts from the 
beginning of a task until its completion.

Consequently, TCERT could be accomplished with 
high instantaneous effort exerted for a short time interval 
or a lower instantaneous effort over a longer time interval. 

Most assessment tasks require more than one step 
or process. Each of these subtasks will have a processing 
load of information that requires sufficient cognitive 
load to complete that task. We define here the Maximum 
Instantaneous Cognitive demand (MIC-demand) as 
the portion of a problem where the combined cognitive 
demands of the problem are the greatest. This is shown as 
a horizontal line on Figure 1 representing the maximum 
instantaneous cognitive demand for a given task which 
varies from task to task. This separation of instantaneous 
load and overall effort is similar to Cognitive Load Theory, 

Figure 1.  Model of Total Cognitive Effort for a Task 
(TCERT) and MIC-demand for a simple task (left) and a 
more complicated task right.
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in that some of the cognitive load is directly related to 
characteristics of the problem while other parts of the 
load are related to skills that have been taught or learned 
(Paas, Tuovinen, Tabbers and Van Gerven, 2003; Paas and 
Van Merrienboer, 1994). 

2.2.2 � A KSA-mitigated Model of Instantaneous 
Cognitive Load and TCERT

Knowledge, Skills and Abilities (KSAs) represent 
characteristics of individuals that they use to complete 
tasks. Individual KSAs reduce the cognitive effort 
required to complete a task by using or applying 
previously learned knowledge and skills to the task. 
For example, an elementary student who is learning to 
multiply might exert a great deal of cognitive effort to 
determine the value of 12 times 12 by skip counting, using 
a matrix or breaking the problem into component parts. 
On the other hand, someone who has knowledge of either 
multiplication facts or perfect squares can simply recall the 
answer is 144 with little cognitive effort. Unique problem 
solving approaches have sometimes been examined as the 
differences between how experts and novices approach 
problems (Chi, Feltovich, and Glaser, 1981; Hmelo-Silver 
and Pfefer, 2004). KSA-mitigated Load represents the 
parts of a given task that can be accomplished through the 
application of KSAs which will reduce the mental effort 
required for each step of the task by using previously 
learned skills, processes, chunking of information and 

algorithms rather than manipulation of information in 
working memory. The largest gap between a given set 
of KSAs relevant to a task and the MIC-demand would 
represent the Maximum cognitive load required for a 
given task as shown in Figure 2.

Since the task may require multiple steps, as is 
described later in the graphic literacy construct, the 
TCERT may be spread out of over multiple steps (see Task 
2 in Figure 2). It is possible that an individual may have 
some of the KSAs necessary to complete a task, but not 
all of the KSAs to complete that task. A test taker may get 
started on a problem and get stuck. In the think aloud 
research (Thomas and Langenfeld, 2017a), there were 
several instances that test takers would get started on a 
problem and state that they did not know what to do next 
and would announce that they would need to guess and 
move on. 

In the example above, Individual A has a set of KSAs 
that are relevant to each task. For Task 1, a small gap exists 
between the KSAs and the MIC-demand. Therefore, Task 
1 has a small maximum cognitive load requirement. 
For Task 2, it involves three parts or steps for which 
Individual A has different KSAs. The maximum cognitive 
load required for a task would be the difference between 
the MIC-demand required for a task and the individual’s 
KSAs relevant to completing the task. Additional vertical 
arrows could be added to represent the maximum 
cognitive load required for Part 1 and Part 3 of the task.

Each individual has a Personal Overload Threshold 
(POT), which represents the maximum instantaneous 
cognitive effort that an individual is able and willing to 
exert. POT should involve in interplay between cognitive 
abilities, particularly those related to working memory 
and metacognition and a persistence factor. This POT 
can be overlaid on the graph of KSA-mitigated Load 
(See Figure 3). Paas et al. (2003) referred to a construct 
similar to POT as “assumed cognitive capacity limit” 
using Cognitive Load Theory. Wise and colleagues (Wise 
and Smith, 2011; Wise, 2017) refer to effort capacity as 
the amount of effort a test taker is willing and able to give 
to solution (non-guessing) behaviour. As each of these 
increases, the POT for an individual would increase. 
Conversely, as these decreases, the POT would decrease 
as well. The sum of the KSAs and the POT represent the 

Figure 2.  Model of KSAs related to a task and maximum 
cognitive load required.
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most cognitively complex task (highest MIC-demand) an 
individual can complete based on his or her particular set 
of KSAs relevant to the task. 

If the task greatly exceeds the abilities and skills of the 
individual, cognitive overload occurs and performance 
falls off dramatically (Chen et al., 2016). This may be the 
case for activities in a work or performance setting; in an 
assessment setting, if the overload threshold is exceeded, 
the individual will either give up or guess, because they 
do not have enough cognitive overload capacity and skills 
to complete the assessment task. Therefore, there should 
be a specific POT for each individual that represents 
the maximum instantaneous cognitive load that the 

individual will exert before the anticipated decrease 
in performance occurs. Wise (2017) suggests that this 
results in rapid guessing behaviour which is evidence that 
an individual lacks the relevant KSAs for the given task 
even if a correct answer is selected. 

Based on Figure 3, Individual A would be able to 
complete Task 1, because the sum of POT and KSAs related 
to the task exceed the MIC-demand of Task 1. Individual 
A would not be able to complete Task 2, because the POT 
is exceeded by the second step of Task 2. So, Individual 
A may attempt Task 2 and successfully complete the 
first step; however, he or she would be overloaded by the 
second part of the task and either guess or give up. This 
individual could complete the third part of Task 2, if some 
scaffold were given so that the overload did not occur at 
step two of the task. For example, if the assessment used 
a propagation of error scoring method like many AP 
exams, the student may just make up or assume an answer 
for part two and use that answer to complete the third 
part of the task that they could complete.

Consider Individual B who has greater mastery of the 
KSAs on the second part of Task 2 in Figure 4. Individual 
B would be able to complete Task 1, because the sum of 
the KSAs related to the task and POT exceed the MIC-
demand of Task 1. Individual B would also be able to 
complete Task 2, because the sum of KSAs for each part 
of Task 2 with the POT is greater than the MIC-demand 
required for the three steps of Task 2. Thus, test takers 
with stronger KSAs in the tested construct should be able 
to complete more tasks with solution behaviours because 
the gap between MIC-demand and KSA-mitigated load 
will be small.

Differences in POT should also lead to differences in 
testing behaviour. Figure 5 illustrates Individual C with 
the same KSAs as Participant A but with a higher POT. 
This individual is able to complete both tasks. However, 
this individual, in completing the task, requires a greater 
instantaneous cognitive load than Individual B because 
the gap between the MIC-demand of Task 2 and the 
KSAs related to Task 2 is greater than that of Individual B. 
Conversely, if an individual had a much lower POT than 
Individual A, then that individual’s combination of KSAs 
and POT would not be sufficient to solve Task 1 with 
its lower MIC-demand. Wise (2017) suggests that this 
POT will vary from task to task based on self-awareness 

Figure 3.  Model for Personal Overload Threshold (POT) 
for Individual A.

Figure 4.  Model of Personal Overload Threshold (POT) 
for Individual B with higher KSA-mitigated load.
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(metacognition) of a lack of KSAs referring to Kahneman’s 
(2011) System 1 thinking as intuitively guessing rather 
than using effortful System 2 thinking. 

Figure 5 alludes to another factor, that performance 
and normal workload are phenomena associated with 
individuals. Therefore, the mental effort for a particular 
task involves the intersection of the task demands and the 
KSAs of the individual. The task demands are related to 
the complexity of the information to be processed, the 
number and types of processes that an individual must 
do to complete the task, and the time allowed (Paas et al., 
2003). Consequently, individuals with strong KSAs for a 
given task should be able to reduce the total mental effort 
through activities like chunking of information (Chi et 
al., 1981). Cognitive Load Theory refers to these adaptive 

strategies as germane or effective load (Paas et al., 2003). 
Although Cognitive Load Theory specifically addresses 
issues related to teaching and instruction, the model 
is also relevant to assessment tasks. In a more general 
sense that extends beyond instruction, KSAs enable an 
individual to reduce the total mental effort required to 
complete a task. Therefore, the area represented by the 
KSAs on the cognitive load diagram, the KSA-mitigated 
effort, reduces the mental effort that must be exerted to 
complete the task. Using this idea, experts have KSAs that 
mitigate a great deal of TCERT and are able to complete 
tasks more efficiently and accurately than novices (Chi et 
al., 1981). The area that is not accounted for by the KSA-
mitigated effort would represent the Cognitive Effort 
Necessary for Task Success (CENTS). As shown in Figure 
6, Task 1 has a small area of the TCERT that is not covered 
by the KSA-mitigated Load and therefore, a small total 
cognitive effort would be required to successfully attempt 
and complete Task 1 because the CENTS value, the area 
not accounted for by KSAs, is small. Conversely, Task 2 
has a large CENTS area and will require a greater total 
cognitive effort. For any problem that an individual has 
some KSAs, the CENTS should be smaller than the TCERT 
as the KSAs will allow for some processing of information 
that does not require manipulation in working memory. 
This also allows an individual the opportunity to exert 
significant cognitive effort while still getting the problem 
incorrect.

It would be expected that given the wide range of 
KSAs among individuals that there would be great 
variability in the CENTS individuals would exert to 
solve tasks correctly. However, within that variability, 
individuals with similar overall skill levels would likely 
have similar CENTS for tasks. Consequently, a scatter 
plot of total cognitive effort for all individuals against 
some measure of difficulty or cognitive complexity should 
show a great deal of variability and a weak correlation. 
However, examining data within individuals there should 
be a natural progression of increased total cognitive effort 
as the cognitive complexity of a task increases. Moreover, 
analyzing the correlation of median or mean total 
cognitive effort to task difficulty or cognitive complexity 
should show a strong positive correlation, because the 
group’s central tendency should represent some measure 
of the “average” KSAs against the cognitive demands 

Figure 5.  Model of Individual C with a High POT.

Figure 6.  Model of Cognitive Effort Necessary for Task 
Success (CENTS) in a KSA-mitigated model.
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of the task (Marshall personal communication, Jan. 22, 
2018).

c. A KSA Model and Context Model of Task Difficulty 
for Graphic Literacy 
For the redesign of the WorkKeys Locating Information 
assessment, assessment designers combined multiple 
versions of the graphic literacy construct that defined 
the difficulty of a task using graphic literacy skills as a 
combination of the number of cognitive steps or processes 
that an individual must complete to successfully complete 
the task and the complexity of the graphic or set of graphics 
(ACT, 2019; Langenfeld et al., 2020). Experts in graphic 
literacy have called simple tasks that involve locating or 
extracting data from graphics as reading the data (Curcio, 
1987; Curcio and Artz, 1997), elementary level questions 
(Wainer, 1992) and extracting the data (Wainer, 1992). 
Tasks that require at least one step beyond locating 
information have been called reading between the data 
(Curcio, 1987; Curcio and Artz, 1997) or intermediate 
level questions (Wainer, 1992). Tasks that require going 
beyond an initial inference or understanding that requires 
three or more total steps such as predicting other values or 
using the graph to create a logical argument using claim, 
evidence and reasoning structure were called reading 
beyond the data by Curcio and colleagues and overall 
level of questions by Wainer. These were simply called 
one-step, two-step and three- (or more) step cognitive 
processes for the construct as defined for the assessment.

Separately, the complexity of the graphic or set of 
graphics contributes to the difficulty, and therefore 
TCERT of a task as well. Facets such as the type and 

familiarity of the graphic contribute to the complexity 
(Shah and Freedman, 2011; Shah and Hoeffner, 2002). 
So, bar graphs are more familiar than multiple line graphs 
and are less complex. Data density, complex relationships, 
nesting of data and number of graphics also contribute 
to graphic complexity (Taylor, Renshaw, and Choi, 2004; 
Aberg-Bengtsson and Ottosson, 2006). We found in 
thinkalouds that having an additional graphic added to 
the complexity as test takers needed to determine which 
graph to use and process more information (Thomas and 
Langenfeld, 2017a). Research showed that test takers with 
low graphic literacy skills would focus visual attention on 
the first graphic that contained words from the question 
stem, even if it was irrelevant. (Kliewer, Langenfeld, and 
Thomas, 2018; Thomas and Langenfeld, 2017a, 2017b). 
A four-level system of graphic complexity of Easy, Low 
Moderate, High Moderate, and Complex was adopted 
after review with external experts (ACT, 2019).

A combined model matrix was developed using both 
facets. The Levels in Table 1 refer to the job levels in 
profiling that would most likely use that skill (ACT, 2019; 
Lee and Nathan, 1997; Palmer and Valet, 2001). Since 
the assessment is linked to claims about what individuals 
know and can do in the workforce, the nomenclature was 
linked to the jobs that require those skills to be successful 
when first beginning a job. Others have also proposed a 
model that integrates facets of the graphical complexity 
with the task or question (Tan and Benbasat, 1990; Shah 
and Freedman, 2011).

Importantly, this model of the difficulty of graphic 
literacy tasks should be verifiable by some measure of 
cognitive processes, in addition to the normal evidence 

Number of 
cognitive steps 

required

Graphic Complexity

Easy Low Moderate High Moderate Complex

One Step Level 3 Level 3 Level 4 Level 5

Two steps Not Tested Level 4 Level 5 Level 6

Three steps Not Tested Level 5 Level 6 Level 7

Table 1. A model for the interplay and overall difficulty of graphic literacy tasks
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from psychometric findings. Level 7 tasks are defined as 
more difficult and should require more cognitive effort 
than Level 6 which should require more cognitive effort 
than Level 5 and so on. There should be some way to 
actually quantify the cognitive difficulty of tasks rather 
than rely on psychometric properties such as the p-value 
or IRT-b value. Ideally, this would be quantifiable and not 
rely solely on self-reported measures of difficulty that can 
be gathered in other cognitive lab activities. 

2.4 � How to Measure Total Cognitive Effort 
(TCE)

Eye tracking software is able to calculate instantaneous 
cognitive load from pupillometry measurements taken 
during eye tracking experiments. To bridge between 
instantaneous cognitive load and overall mental effort the 
cognitive load must be integrated over the time interval 
over which it was calculated. The Total Cognitive Effort 
(TCE) an examinee exerted on an item was estimated by 
integrating the individual cognitive effort from the initial 
step of viewing the item to the final step of providing an 
answer. Each participant’s TCE per item was estimated as 
shown in Equation 1.

=

= ∑ ji

n

j

j 1

ICA ( )˘˘˘
		

	 (1)

where, TCEi = the Total Cognitive Effort exerted on item 
i, n = the total number of eye movement measurements 
captured during item i, ICAj = the ICA captured for the 
unique eye movement j, and timej = the elapsed time in 
milliseconds of eye movement j (Thomas and Langenfeld, 
2018; Langenfeld et al., 2020). S. Marshall confirmed 
the appropriateness of the TCE and she suggested that 
given the variability in individual’s cognitive effort that 
examining mean or median TCEs would be acceptable for 
analysing item level data (personal communication, Jan. 
22, 2018).	

In the realm of assessment, more complex tasks, 
as defined by the construct, should require a greater 
amount of TCE. This should have two effects. First, the 
MIC-demand for the most complex steps of the process 
will increase. If the MIC-demand exceeds the POT 

threshold of the examinee, an overload will occur and 
the examinee will not be able to successfully complete the 
task in an intentional way. In the context of assessment, 
this results in either a guessing strategy or an omission, 
as the individual would not be able to complete the most 
difficult part of the task. This results in a significant drop in 
TCE because the examinee realizes that he or she cannot 
solve the task. Consequently, there will be an anticipated 
drop in TCE results for items that exceed the sum of 
POT and KSA-mitigated load. Second, for examinees 
with a stronger set of KSAs, the overload threshold will 
not be reached; however, they will likely need to exert 
a higher maximum cognitive load for the most difficult 
tasks (higher MIC-demand) as well as requiring more 
TCE. The TCE increase could be accomplished by 
maintaining instantaneous cognitive load for a longer 
time or increasing the instantaneous cognitive load on 
a unit time basis and maintaining the same effort time. 
It is likely that for most individuals, there will be a 
combination of increased maximum cognitive load (for 
the most difficult processes) as well as an increase in effort 
time (for the accumulation of multiple processes for a  
complex task).

3.  Research Questions
•	 Does the integration of ICA and time yield a 

meaningful measure of Total Cognitive Effort 
(TCE)?

•	 Does the TCE increase for a participant as the 
difficulty (anticipated TCERT) of a task as defined 
by the construct increases?

•	 Does the TCE indicate that for participants who 
have low KSAs for a given task a tendency to 
cognitively disengage and guess? 

•	 Does individual random variation in TCE render 
measures of central tendency uninterpretable?

4.  Methods
This study utilized eye tracking methodology to analyze 
participants’ responses to items on assessments measuring 
workforce-related skills. Each participant completed 
an assessment of workplace graphic literacy skills. All 
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individuals were compensated for their time after signing 
a participant consent form. All participants were recruited 
from a metropolitan area in one Midwestern state. 
Individuals were recruited from previous study email 
lists, word of mouth and through electronic backpack 
messages through local high schools (both traditional 
and alternative). Flyers were also posted at some local 
grocery stores. 

4.1 Eye Tracking Equipment
The SensoMotoric Instruments (SMI) Redn 250 collection 
system set at 60 Hz collection was used for this research. 
The infrared bars were placed below 27-inch Asus PB278Q 
monitor located approximately 70 cm in front of the 
participant. The SMI Experiment Center 3.7 software was 
used and all participants successfully completed a 5 point 
calibration to a spatial resolution of 0.05 degrees (SMI, 
2016). The supervisor monitored the system to ensure 
that the eye measurements were in frame. All participants 
completed the assessment in the allotted operational time 
of 55 minutes. 

The eye tracking technology collected gaze data as 
the participants worked through the assessment. The 
gaze data included information on fixations, saccades, 
blinks and click stream data. A sampling rate of 60 Hz 
meant that eye movements were measured every 16.7 
ms. Cognitive load was determining using EyeTracking, 
Inc. Workload RT V3 Academic software (Marshall, 
2007). This module functions as the Index of Cognitive 
Activity (Marshall, 2002) and provides an ICA value for 
each eye separately and the bilateral ICA for each event in 
the data set. The ICA was calculated separately for each 
individual using the ICA software module. The data for 
each individual were exported as a comma delimited file 
that was then analyzed in Microsoft Office 365 ProPlus 
Version 15.0.4953.10001. 

Eye tracking data were analyzed using SMI BeGaze 3.7 
software (SMI, 2016). Since the testing platform utilizes 
only one URL for the entire testing sequence, a custom trial 
for each item for each participant was created by selecting 
the portion of the data that the participant worked on a 
given question. This was defined operationally as starting 
with the first screen frame in the playback that included 
the entire question stimulus, stem, and foils and ending 
after the participant used the mouse to select a response 

and click next. Data between questions while the software 
refreshed the screen for the next question were not 
analyzed. The load time between questions was typically 
between 2 and 6 seconds, although some participants 
experienced a lag time between some questions of 
approximately 10 seconds. One individual, Participant 
4, was excluded from group analysis because too large a 
percentage of data was missing due to head movements 
in and out of frame so that 39% and 51% of the data were 
missing from the left and right eye, respectively. Data for 
individual items were discarded as random guessing if the 
individual spent less than 15 seconds to answer any item 
above the lowest Level 3 items.

4.2 Assessment Used
The ACT WorkKeys Graphic Literacy assessment (ACT, 
2019) was designed to measure the skills individuals use 
when they read and comprehend graphical materials to 
solve work-related problems. The assessment consisted of 
32 scored items covering 14 unique graphics. Embedded 
within the assessment form were an additional six pretest 
items based on three additional graphics. Graphics and 
items were presented together on the screen. For a few 
items, the size of the graphic necessitated that the examinee 
used the scroll feature of the computer screen to view 
the entire graphic along with the item. Examinees were 
allowed 55 minutes to complete the assessment and none 
of the study participants required the entire 55 minutes to 
finish. The assessment had been field tested and used as 
a part of a national workforce assessment program. The 
reliability of both raw scores and scale scores was strong 
with estimates of coefficient alpha of 0.85 or above (ACT, 
2019). Participant responses were exported to a data file 
to assign item and overall scores for each participant. This 
assessment is used as part of the NCRC Work Readiness 
certificate program that allows test takers to document 
that they have skills appropriate to a variety of jobs in the 
Job Pro database (ACT, 2019).

4.3 Participants
The group included 10 female and 8 male participants 
who were recruited from a Midwest metropolitan area 
of approximately 170,000 people. The ethnicity of the 
group included one Asian, two African American and 
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15 white/Caucasian participants. Nine participants were 
enrolled in high school; three were college students; six 
were workforce eligible adults. Three participants were 
employed full-time, eight were employed part-time and 
seven were not employed outside the home (six high 
school students and one adult). Of the nine adults, the 
highest educational attainments were: One high school 
graduate, three some college with no degree, one bachelor’s 
degree and three graduate degrees. Since the WorkKeys 
assessments are used in many state employment centres 
in addition to being given to high school students, this 
mix of individuals was deemed appropriate as similar to 
the overall testing population of the WorkKeys program. 

5. Results

5.1 Assessment Scores
Individuals’ answers were extracted and used to calculate 
the raw and scale score for the 32 operational items. Raw 
scores ranged from 10 to 32 items correct out of the 32 
items. The mean score was 24.25 correct (SD = 7.51) and 
the median was 25. Four participants (22%) earned a Level 
Scale Score of 3 (lowest passing) or lower which is similar 

to national test administrations that have approximately 
23% in those score ranges (ACT, 2019). These were 
classified as Low Scorers. Five of the 18 participants 
(27.8%) earned a Level Scale Score of 4 or 5 and classified 
as Middle Scorers. This percentage is lower than average 
national administration where approximately 48% of test 
takers earn a Level 4 or 5. The remaining 9 participants 
(50%) earned a Level Scale Score of 6 or 7 and classified as 
High Scorers. This percentage is higher than the national 
average of 28%. 

5.2 � Cognitive Effort Results for Items and 
Classification of Items

The TCE was calculated for each individual for each 
item separately, an example is shown in Figure 7 and 
those values were used to calculate the mean and 
median TCE value for each question as shown in Table 
2, which includes 32 operational and 6 pretest items. 
Figure 7 shows the TCE increasing over time showing 
the cumulative cognitive effort on the task. Changes in 
slope are indications of changes in the instantaneous 
ICA readings. Steep slopes, such as the region between 
approximately 19,000 ms and 25,000 ms are indications 

Figure 7.  Example of item Total Cognitive Effort (TCE) as a function of time 
(Item 33, Participant 3).
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Item # Graphic 
Complexity

Cognitive 
Steps Overall Level Mean Median SD 

1 Simple 1 3 4412.1 1905.7 4031.9

2 Simple 1 3 6450.4 3097.2 6574.7

3 Simple 1 3 5041.8 2308.4 5143.7

6 Low Mod 1 3 4605.7 2735.2 4926.8

7 Low Mod 2 4 8820.8 3794.6 9599.1

8 Low Mod 2 4 9809.7 6718.3 8791.8

9 Low Mod 2 4 5416.4 2595.2 6013.5

10 Low Mod 2 4 8225.5 5078.1 7796.4

11 Low Mod 2 4 9146.1 5750.2 8300.4

12 Low Mod 2 4 7035.1 5700.4 8126.1

13 Low Mod 3 5 9997.1 8363.6 10076.8

14 High Mod 1 4 8865.2 5738.9 7441.2

15 High Mod 2 5 4671.2 3935.3 3738.4

16 High Mod 2 5 11038.8 8249.5 7604.4

17 High Mod 2 5 7217.3 3384.0 7260.8

18 High Mod 2 5 5908.1 4315.5 4521.2

19 High Mod 2 5 8778.8 3319.3 9868.2

20 High Mod 2 5 15698.2 11208.2 12249.3

21 High Mod 2 5 8094.5 5564.4 6730.6

22 High Mod 3 6 11025.2 6000.9 15726.4

23 High Mod 2 5 18311.9 13211.4 16072.4

28 Complex 2 6 7661.9 4985.8 7561.8

29 Complex 2 6 10759.3 3552.7 20264.3

30 Complex 2 6 7924.3 6500.4 6966.3

31 Complex 2 6 7308.8 6506.9 6249.7

32 Complex 3 7 12589.3 9040.7 9666.3

Table 2. Total Cognitive Effort (TCE) descriptive statistics for each graphic literacy item
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of high instantaneous cognitive load, in this case for an 
approximately five second period. Table 2 shows both the 
median and the mean. As was suggested earlier, the mean 
shows a tendency to skew if one or two individuals spend 
a great deal of time and cognitive effort.

5.3 � Results based on Scoring Category 
(High, Middle, Low) by Portions of the 
Graphic Literacy Construct

Additionally, the values were clustered by graphic 
complexity (EASY, LOW MODERATE, HIGH 

Figure 8.  Mean Total Cognitive Effort (TCE) for each participant by four levels of graphic.

33 Complex 2 6 18235.5 18309.9 12706.7

34 Complex 3 7 12485.6 9363.0 10882.5

35 Complex 3 7 18090.2 14845.5 16838.0

36 Complex 2 6 7671.9 5047.2 6421.9

37 Complex 3 7 17399.0 12975.6 12609.9

38 Complex 3 7 17927.0 11552.6 16538.6



Jay Thomas

85Vol 23(Special Issue 1) | 2022 | http://jattjournal.net/� Journal of Applied Testing Technology

Figure 9.  Mean of item median Total Cognitive Effort (TCE) for complex graphics 
identified by graphic type for the three different score groups.

Figure 10.  Mean TCE per item for the Low Scorers, Middle Scorer and High Scorers based on components of the construct: 
graphic complexity, number of cognitive steps, and overall item level.
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MODERATE and COMPLEX) to determine relationships 
between graphic complexity and the total cognitive effort 
exerted by test takers. These results are shown in Figure 8. 

For the COMPLEX graphic category, the results were 
also plotted by the type of graphic for a consideration of 
familiarity with the graphic type in Figure 9.

These results were then grouped by scoring band 
(High, Middle and Low Scorers) and the mean TCE 
value for each question that fell into that category was 
calculated. The top portion of Figure 10 shows the mean 
TCE as a function of Graphic Complexity. The middle 
portion shows the mean TCE as function of the number 
of cognitive steps required to solve the problem. Finally, 
the lower portion shows the mean TCE as a functional of 
the overall Item Level, which should represent the overall 
difficulty of the item.

5.4 � Comparing a Low, Middle and High 
Scorer

The individual TCE plots for individuals can be compared 
when plotted on the same graph. Two example items are 

plotted below for the same three individuals. Figure 11 
shows the TCE graphs for a Low, Middle and High Scorer 
for a Level 4 item. The Middle and High Scorer both 
answered this item correctly while the Low Scorer did not.

Figure 12 displays the TCE on a Level 6, more difficult, 
item that all three individuals answered correctly. 

6. � Discussion 

6.1 � Research Question 1: Does the 
Integration of ICA and Time Yield a 
Meaningful Measure of Total Cognitive 
Effort (TCE) 

Participant response data gathered through eyetracking 
analysis and using the ICA software appear to support the 
integration. Meaningful integration was possible for all 
but one participant. Items that were judged to be more 
cognitively difficult based on the construct definition 
showed overall higher levels of TCE in Table 2 and the 
three portions of Figure 10.

Figure 11.  Comparing Total Cognitive Effort (TCE) for High, Middle and Low Scorer 
on a Level 4 Item.
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The cumulative graphs of cognitive effort like Figures 
7, 11 and 12 provide evidence related to both the KSA-
mitigated model and the assessment construct. Steeper 
slopes indicate increases in instantaneous effort. These 
could be co-mapped to sequence maps to see how the 
increased cognitive load relates to the overall gaze pattern 
to provide further validity evidence for skill descriptions 
as well as looking at both optimal solutions and sub-
optimal solutions. Horizontal or nearly horizontal areas 
on these graphs indicate time periods of little cognitive 
effort beyond that required to focus on a calibration point 
on the screen. These give evidence of a lack of effortful 
behaviour that could not be measured simply by latency 
and click stream data. They also allow for comparing 
cognitive effort of the same individual across multiple 
tasks to compare to the complexity metric of the construct. 

Finally, differences in these plots could provide insight 
into test takers’ approaches. For example, the Middle 
Scorer in Figures 11 and 12 has a steep slope for nearly 
all items while the High Scorer has a much lower slope 
on all items. Follow-up research and post-test questions 
about approaches to assessment might provide further 
insight. Does the Middle Scorer feel the need to rush 

because of earlier testing results on different assessments? 
This would validate portions of the CENTS model related 
to speededness as a contributing factor to total cognitive 
effort necessary. Is this a case of the proverbial tortoise 
and the hare? More research is needed to examine these 
differences. 

6.2 � Research Question 2: Does the TCE 
Increase for an Individual as the 
Anticipated Total Cognitive Difficulty 
of a Task as Defined by the Construct 
Increases?

In general, the relationship appeared to be true. 
Aberrations from this trend may indicate giving up or 
guessing behaviour if the TCE was far below the expected 
value. If the value was far above the expected value, it 
may indicate that the individual was solving using a 
less than optimal set of KSAs which could be addressed 
through instruction as suggested by CLT (Paas and Van 
Merrienboer, 1994; Paas et al., 2003) or there may be 
facets of the task that caused a greater cognitive load such 
as the necessity to keep large amounts of information in 

Figure 12.  Comparing Total Cognitive Effirt (TCE) for High, Middle and Low Scorer on a Level 
6 item.
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working memory because of the density of information 
or scrolling effects. Figure 12 shows that for individuals 
with moderate or high graphic literacy, the expected 
trend in TCE is present and that for individuals with low 
levels of graphic literacy, the POT was likely exceeded 
and guessing behaviour occurred after an initial attempt 
to solve the task. 

Figure 8 provides good evidence for both this assertion 
and the KSA-mitigated model, specifically the Personal 
Overload Threshold. When looking at Middle and High 
Scorers, the mean TCE by graphic type increases for 
all participants except participants three and five who 
show the expected pattern until COMPLEX graphics 
are used. Both of these showed low TCE for the items 
about a COMPLEX process diagram. So, it appeared 
that they evaluated what they knew and could do and 
used non-solution behaviours after assessing the graphic 
stimulus and question stem. This type of behaviour will 
be discussed further when examining the three students 
in Figures 11 and 12. 

As anticipated the tasks associated with the EASY 
graphic displayed near automaticity for most of these 
scorers. For Low scorers, across all three parts of the 
construct, graphic complexity, number of cognitive steps 
and overall item level, it appears that participants worked 
on some problems, particularly those with very familiar 
graphic types like tables and then decided that the task 
exceeded their POT and moved on. Figure 9 shows that 
the Low Scorers exerted approximately twice as much 
TCE on the item set that focused on two dense tables, 
but still averaged significantly less TCE than either the 
Medium or High Scorer groups. This was most evident in 
the three cognitive step items in the set that had the lowest 
TCE of the set for all Low Scorers. It appeared that these 
test takers, in general, know what they can do and do not 
invest much time or mental effort on tasks that they were 
not likely to answer correctly which again supports the 
POT portion of the KSA-mitigated model.

Figure 10 shows the anticipated increases for both 
High and Middle Scorers. The small sample size makes 
it difficult to draw conclusions about the groups as some 
test takers appeared to check their work before moving 
on which would add to that individual’s TCE while others 
would select an answer and then move on. Also, Figure 12 
presents some differences between the Middle and High 

Scorer. Using latency data alone, it would appear that the 
Middle Scorer is more efficient, completing the task in 
approximately 40 seconds less time than the High Scorer. 
However, the TCE data tells a different story. The Middle 
Scorer exerted nearly twice as much cognitive effort to 
complete the same task. Perhaps, the High Scorer was 
able to mitigate much of the higher instantaneous load 
by using KSAs to mitigate the overall effort as suggested 
not only by the KSA-mitigated load model presented 
here but also by well-known models such as chunking 
the information (Chi et al., 1981). Other analysis of the 
data found that individuals with high levels of graphic 
literacy looked at graphic data and saw trends with 
automaticity while those with lower graphic literacy 
skills looked at individual points and then determined if 
there was a pattern using both heat maps (Thomas and 
Langenfeld, 2017b; Langenfeld, Thomas, and Gao, 2019) 
and thinkalouds (Thomas and Langenfeld, 2017a; ACT, 
2019) separately. 

6.3 � Research Question 3: Does the TCE 
Show Trends that Would Indicate that 
for Participants who have Low KSAs for 
a Given Task a Tendency to Cognitively 
Disengage and Guess?

Yes, response data indicated that when individuals 
attempt tasks far above their mastery level, as indicated 
by overall assessment score, TCE generally decreased. For 
difficult items that were based on more familiar contexts, 
the relevant KSAs allowed low-scoring individuals to 
attempt the item because they had not exceeded the 
POT. However, on most complex items, the individual 
lacked the necessary KSAs and the POT was exceeded, 
resulting in guessing. Moreover, for items beyond the 
simplest categorization of each facet, low scorers showed 
a decrease in TCE indicating that the items exceeded their 
abilities and that guessing behaviours occurred.

Additionally, Figures 11 and 12 give evidence of what 
would be expected. The Level 4 item in Figure 11 is near 
the ability level of the Low Scorer. The individual exerts 
a great deal of TCE, over 21,000 units across almost 
55 seconds of effort. There are several changes in slope 
indicating increased processing activity at around 25 and 
45 seconds elapsed, with a lower intensity effort section 
between. These correspond to decreases in mental activity 
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as measured by pupillometry when changing tasks in 
previous research (Bailey and Iqbal, 2008). The individual 
has committed to answering the question suggesting that 
that the POT and KSAs were sufficient to overcome MIC-
demand. Even though the selected answer was incorrect, 
the individual clearly engaged in meaningful effort. 

Conversely, the pattern in Figure 12 for the Level 
6 item showed the opposite. The initial nine seconds 
of reading the question and scanning the graph were 
followed by a period of virtually no cognitive effort. It is 
as if the test taker read the question looked at the passage 
and then posed the mental question ‘can I answer this’ 
and decided no and guessed correctly. Using latency data 
alone would have suggested that this individual engaged 
in meaningful solution behaviour. The time spent on the 
question exceeded the established guessing threshold of 
15 seconds. It also exceeded the ten percentage of average 
time threshold suggested by Wise (2017). However, the 
TCE graph illustrates the principle in the KSA mitigated 
model addressing POT and non-solution behaviours. The 
individual got to a point that exceeded POT and then 
guessed.

6.4 � Research Question 4: Does Individual 
Random Variation in TCE Render 
Measures of Central Tendency 

Uninterpretable?
No, individual random variation in TCE measures did not
render the measures of central tendency uninterpretable, 
as shown in Tables 3 and 4. For the Graphic Literacy 
assessment, individual level TCE data showed weaker 
correlations to the construct components, between 0.20 
and 0.26. However, when using the median TCE values, 
the correlations to the three constructs components as 
well as to the IRT a-parameter and b-parameter showed 
strong relationships. Correlations of the median item TCE 
to three constructs and item difficulty and discrimination 
ranged from 0.55 and 0.62. (Thomas and Langenfeld, 
2018; Langenfeld et al., 2020).

One of the great limitations of eye-tracking research 
is the small sample size. In this study, data from 18 
individuals was used. However, since each individual 
generated thousands of data points, there were sufficient 
data to warrant conclusions. Ideally, the study would be 
replicated with a larger, more representative sample of 
middle level scorers. The inclusion of the “Messy Middle” 
(Gotwals and Songer, 2009; Gotwals, Songer, and Bullard, 
2012) could provide additional insight. Since the Messy 
Middle inconsistently possesses and applies KSAs, they 
are likely to show greater TCE variability. They might 
also provide insights into how items just above the Zone 
of Proximal Development (Vygotsky, 1987) behave for 
those with incomplete skills as Figure 8 showed for a Low 

Construct Component Individual TCE by 
Item Median TCE by Item

Graphic Complexity 0.20 0.55

Cognitive Steps 0.26 0.56

Overall Item Level 0.26 0.62

Table 3. Correlations of individual TCE and mean TCE to assessment constructs

IRT Parameter Correlation to Median TCE by item

a (discrimination) 0.46

b (difficulty) 0.45

Table 4. Correlations of IRT 3PL parameters to Median TCE by item
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Scorer. This could provide additional insight into the 
POT. Additional data through retrospective think aloud 
protocols (Someren et al., 1994) could provide validation 
that the individual was trying to complete the task and 
at some point reached a sub-task that was too difficult 
and then proceeded to guess (either on that component 
of the task or the entire task) and then moved on either 
to complete the remaining tasks (if the individual only 
guessed on the sub-component) or to the next item. 

6.5 � Limitations and Next Steps
The largest limitation to this research is the small 

sample sizes that can be collected using eye-tracking 
equipment. The other portion of this study which used 
paper and pencil also included approximately 20 people; 
however, the SMI-goggles used are not compatible with 
the ICA software. This approach should be applied to 
other assessments and constructs. Data has been collected 
on a workforce reading and a workforce math assessment 
but these data have not yet been analyzed.

Since most assessed constructs include a construct 
map (Wilson, 2009) that suggests that task becomes more 
cognitively difficult as the items and tasks move along the 
progression, there should be a method to validate this 
increased difficulty by using some measure of cognition 
such as TCE. This approach of integrating the ICA 
over task time should be applied to other assessments 
including those based on PNP (Paper and Pencil) or CBT 
(Computer-based Testing) formats to determine if the 
findings here are representative of a general pattern that 
affirms the interaction of KSAs with the cognitive demands 
of the tasks involved. Eye tracking data have been collected 
for both math and reading in the workplace assessments 
that will be analyzed to address this issue. The potential 
of using cognitive effort as a measure of item difficulty 
in addition to psychometric indices could lead to a more 
cognitively-based understanding of item characteristics. 
For many years, psychometric theory has assumed that 
the difficulty of an item can be determined by statistical 
properties whether using classical or item response 
theory. Psycho-physiological data from eye tracking can 
now provide insight into both the instantaneous difficulty 
of parts of a task using cognitive load and the overall 
difficulty of the task using total cognitive effort. Analysis 

of these types of data can provide insights which allow for 
interpretations of observable behaviour that relate to the 
underlying KSAs and cognitive processes. This analysis 
should allow researchers to link observation, cognition, 
and interpretation vertices of the assessment triangle 
(NRC, 2001).

Additionally, ICA could be used to compare the 
cognitive effort required for PNP and CBT formats. This 
would provide evidence to support or refute the claim 
that the two testing formats can be used interchangeably 
as ways of assessing the same constructs. For example, 
does scrolling on a computer screen add cognitive load 
and effort that is not present when working on a paper 
test? Does having to scan for information across facing 
pages on paper require more TCE than the corresponding 
computer-based testing skill? Are there differences in 
groups being assessed based on age, access to computers, 
or other factors that might affect validity arguments?

Subsequent eye-tracking studies included follow-up 
questions pertaining to how the participant completed 
the task relative to normal class work. The follow-up 
study on another assessment included questions about 
metacognition and the perceived need to rush. Perhaps, 
differences in high ICA and low ICA may be explained by 
student perceptions about the need to rush which would 
validate speedness requirements as contributing to the 
TCERT. 

Integrating psycho-physiological data like pupillometry 
with other sources of validity evidence including both 
traditional cognitive labs and psychometric item properties 
should strengthen arguments about the validity of uses and 
claims based on an assessment. For example, tasks that 
require three-dimensional science reasoning as defined 
by the Next Generation Science Standards (NGSS Lead 
States, 2013) should show greater TCE than tasks that 
only require a student to engage in one or two of the 
dimensions. Since 2001 when Knowing What Students 
Know (NRC, 2001) was published, there have been 
efforts to get inside the black box of cognition. This 
KSA-mitigated model and use of pupillometry to find 
total cognitive effort for tasks present a step towards 
making that unseeable portion of the assessment triangle 
measurable. 
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