
Using Machine Learning to Predict Bloom’s 
Taxonomy Level for Certification Exam Items                                                                                                                              

Alan D. Mead1* and Chenxuan Zhou2

1Chief Psychometrician, Certiverse, 4803 N. Milwaukee Avenue, Suite B, Unit 103, Chicago, IL 60630, USA; 
 alan@certiverse.com 

2Psychometrician, Certiverse, 4803 N. Milwaukee Avenue, Suite B, Unit 103, Chicago, IL 60630, USA;  
chenxuan@certiverse.com 

Abstract
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom’s taxonomy level of the items. We 
addressed five research questions, showing that reasonably good prediction of Bloom’s level was possible, but accuracy 
varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified and other items 
were classified as Level 2), but the performance of the model in distinguishing Level 1 from all other levels was quite good. 
Applying a model developed on an IT certification exam domain to a more diverse set of items showed poor performance, 
suggesting that models may generalize poorly. Finally, we showed what features of items the classifier was using. Examples 
and implications for practice are discussed.  

*Author for correspondence

1.  Introduction
Bloom’s Taxonomy (Bloom et al., 1956; Anderson & 
Krathwohl, 2001) is a framework for categorizing the 
cognitive complexity of education and assessment 
materials, such as learning objectives and exam items. 
This taxonomy enjoys wide usage in the field of exam 
development. This paper briefly describes Bloom’s 
taxonomy and how it may be applied to the exam 
development process, including pitfalls that should 
be avoided. We then sketch a rationale for automated 
classification into Bloom’s taxonomy and turn to the main 
issue of predicting the Bloom’s classification of certification 
exam items using a combination of Machine Learning 
(ML) models using features engineered from Natural 
Language Processing (NLP) models. The discussion 
addresses how this research is connected to the literature 
and explores additional practical implications for using 
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ML and NLP can be used to make exam development 
more efficient. 

2. � Background and Literature 
Review

2.1 Bloom’s Taxonomy
Bloom’s Taxonomy was first created during the 1950s by 
Benjamin Bloom and his colleagues as a set of hierarchical 
models used to classify educational objectives in the 
cognitive, affective, and psychomotor domains (Bloom et 
al., 1956). The cognitive domain is the most widely used 
domain for educators to assess the cognitive complexity of 
the education and assessment materials, such as learning 
objectives and exam questions. The taxonomy for the 
cognitive domain was more recently revised by Anderson 
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and Krathwohl (2001), where the levels were renamed 
and slightly adjusted in the order of complexity. The 
two versions of the taxonomy are referred to as Bloom’s 
taxonomy (Bloom et al., 1956) and the revised Bloom’s 
taxonomy (Anderson et al., 2001).

Table 1 shows the six revised Bloom’s taxonomy 
cognitive domain levels (Anderson et al., 2001) from 
Remember at the lowest level, requiring simply retrieving 
the information from long-term memory, to Create at 
the highest, representing the ability to organize different 
elements in a new way or to propose alternative solutions. 
The revised Bloom’s taxonomy levels were used in the 
current study to label the items, but our literature review 

will cover previous research using both the original and 
the revised Bloom’s taxonomy levels.

The Bloom’s taxonomy cognitive domains have been 
widely used as aid for educators to set learning objectives 
and to design the curriculum. The verbs in Table 1 are 
an indication of the kinds of verbs that would be used in 
learning objectives, although the classification into level 
is more holistic than merely based on the verb used. For 
example, the verb ‘choose’ is shown for levels 1, 3, 5 and 
6, indicating that differing contexts could place a learning 
objective with the verb ‘choose’ at almost any level of the 
taxonomy. 

# Level Definition Exemplar Verbs

6 Create
Put elements together to form a coherent or 
functional whole; reorganize elements into 
a new pattern or structure

adapt; build; change; choose; combine; 
compile; compose; construct; create; 
design; develop; discuss; elaborate; 
estimate; formulate; imagine; improve; 
invent; modify; plan; predict; propose; 
solve; suppose; test

5 Evaluate Make judgments based on criteria and 
standards

appraise; assess; award; choose; compare; 
conclude; criticize; decide; deduct; defend; 
determine; disprove; estimate; evaluate; 
explain; influence; interpret; judge; justify; 
mark; measure; perceive; prioritize; prove; 
rate; recommend; rule on; select; support; 
value

4 Analyze

Break material into its constituent parts 
and determine how the parts relate to one 
another and to an overall structure or 
purpose

analyze; assume; categorize; classify; 
compare; conclude; contrast; discover; 
dissect; distinguish; divide; examine; 
function; infer; inspect; simplify; survey; 
theme

3 Apply Carry out or use a procedure in a given 
situation

apply; build; choose; construct; develop; 
experiment with; identify; interview; make 
use of; model; organize; plan; select; solve; 
utilize

2 Understand
Construct meaning from instructional 
messages, including oral, written, and 
graphic communication

classify; compare; contrast; demonstrate; 
explain; extend; illustrate; infer; interpret; 
outline; relate; rephrase; show; summarize; 
translate

1 Remember Retrieve relevant knowledge from long-
term memory

choose; define; find; label; list; match; 
name; omit; recall; relate; select; show; 
spell; tell

 Note. Based on Anderson et al. (2001).

Table 1. Revised Bloom’s taxonomy cognitive domain levels
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From its inception Bloom’s taxonomy has been meant 
to facilitate interchange regarding assessment: “…a 
common framework for classifying intended student 
learning outcomes could promote the exchange of test 
items, testing procedures, and ideas about testing. (p. 
xxvii, Anderson et al., 2001).” The broad definition 
representing cognitive processes in general, instead of 
some classification limited to a specific content domain, 
allowed the taxonomy to be applied to various domains. 
On the other hand, being broadly defined also requires 
researchers and practitioners to relate the framework 
to specific tasks before applying to different disciplines. 
For example, previous work has been conducted to 
contextualize the taxonomy to biology (Crowe et al., 
2008), computer science (Thompson et al., 2008), 
management (Athanassiou et al., 2003), and medical 
courses (Nkanginieme, 1997). Contextualizing the 
taxonomy for a domain is a considerable amount of work. 
Although the methodology presented in this paper is 
radically different, our approach could be thought of as 
an automated process for contextualizing the taxonomy 
to any item pool.

Bloom’s taxonomy has been used widely in exam 
development for multiple purposes. We identified at 
least three uses specific to exam development. First, the 
taxonomy can readily be applied to exam objectives and 
then again to the items written to assess those objectives 
to ensure that levels of cognitive complexity required in 
the exam questions match those set for the corresponding 
learning objectives. 

In addition, good assessment practices should 
support learning, which foster students’ understanding 
of the learning materials and facilitate their ability to 
integrate and apply what they have learned (Buckwalter 
et al., 1981; Cilliers et al., 2012; Jensen et al., 2014). Thus, 
written items are usually preferred to engage higher-
level cognitive processing, rather than simply requiring 
recall of information. For example, the National Board of 
Medical Examiners Item Writing Guide specifies “Each 
item should assess application of knowledge, not recall 
of an isolated fact (Billings et al., 2020, pp. 29).” Thus, a 
second use of Bloom’s Taxonomy is to avoid lower-level 
items and ensure adequate numbers of items assessing 
higher-order cognitive functions.

Finally, Bloom’s levels are often controlled to ensure 
challenging exam content based on an assumption that 
higher Bloom’s items are more difficult (or that items 

of lower levels are trivially easy). The evidence for an 
association between Bloom’s level and item difficulty 
is mixed. Tan and Othman (2013) found that Bloom’s 
taxonomy was only weakly related to item difficulty. 
The largest predictor in a regression analysis predicting 
Rasch item difficulty of physics items was the type of 
item (multiple-choice vs. constructed response; Mesic 
& Muratovic, 2011). On the other hand, two studies 
of TIMSS item difficulty found Bloom’s level to be 
substantially related to item difficulty. Rosca (2004) 
reported a partial correlation of 0.499 (after partialling 
out the other predictors). Sinharay (2016) found the first 
three levels of Bloom’s taxonomy to be the second most 
important splitting variable in building a classification 
and regression tree. Thus, although Bloom’s level may 
be related to item difficulty, the relationship varies and is 
unlikely to be uniformly strong. Nonetheless, if Bloom’s 
level contributes to predictions of item difficulty, then 
an automated methodology for classifying items into 
the taxonomy could improve the accuracy and efficiency 
of exam development by improving the targeting of the 
desired level of item difficulty.

There are at least two obstacles to effectively using 
Bloom’s taxonomy in exam development: the amount 
of specialized labor required, and the reliability of 
classification (Karpen & Welch, 2016). The verbs shown in 
Table 1 may be helpful in classifying learning objectives, 
but those verbs have, at best, a weak association with 
the cognitive level required to solve an item. Also, as 
previously discussed, the verbs are not unique to a level; 
instead, a holistic judgement about the item is needed. As 
a result, classifying items into Bloom’s taxonomy requires 
subject matter expertise. A Subject Matter Expert (SME) 
has the knowledge needed to understand the process of 
solving an item, but they are unlikely to understand or 
appreciate Bloom’s taxonomy. Therefore, test developers 
face the choice of training item authors to classify items 
into the appropriate levels or employing a SME reviewer 
to perform the Bloom’s classification.

Another problem with using Bloom’s taxonomy is that 
the classification of exam items can have low reliability. 
Karpen and Welch (2016) surveyed 21 pharmacy faculty 
asking them to classify 126 items chosen to be evenly 
distributed across the six levels of Bloom’s taxonomy. 
Overall, the accuracy was 46.0% but they provided a 
confusion matrix (described in the next section of the 
paper) showing that while Bloom’s level 1 items were 
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correctly classified 95.2% of the time, classifications into 
other levels were far less accurate, between 28.6% and 
47.6%. The present authors have independently coded 
pools of items for this line of research, and our agreement 
is typically in the 65% to 75% range. Furthermore, this is 
unsurprising because our experience during classification 
has been that some items are difficult to classify. If we 
felt uncertainty in our own classifications, it would be 
unsurprising if different evaluators reached different 
conclusions about items.

Two studies have reported better agreement for 
collapsed taxonomies (Karpen & Welch, 2016; Plack et al., 
2007). The Plack et al., study collapsed level 1+2, 3+4, and 
5+6 and reported an average accuracy of 88.9% (ranging 
from 78.2% to 100.0%) using these levels. The Karpen and 
Welch study examined a taxonomy with three collapsed 
levels: 1, 2+3, 4+5+6 and reported an accuracy of 81.7% 
using these levels.

In our experience, using a collapsed taxonomy is 
not uncommon, however the traditional solutions to 
improving the reliability of a classification task are to 
train judges and to have multiple judges. Both strategies 
exacerbate the labor required to perform the classification 
of large item pools into Bloom’s taxonomy. Based on 
past machine learning studies, a statistical methodology 
is likely to be both extremely replicable and achieve 
an accuracy comparable to the results for collapsed 
categories.

As previously stated, this paper presents a machine 
learning method for predicting Bloom’s level from the 
words of exam items. Although there are many machine 
learning models, psychometricians will appreciate that 
the method presented in the paper can be applied to any 
item pool in a way similar to IRT models and specifically 
without reference to large domain-specific corpus 
required by many machine learning models applied to 
natural language. The next section describes our approach 
and summarizes prior machine learning research on 
automated prediction of Bloom’s taxonomy and presents 
our research questions.

2.2 � Machine Learning using Naïve Bayesian 
Classification

A multinomial Naïve Bayes Classifier (NBC) model was 
selected for this project for three reasons. First, because 
the model is simple and easily applicable. It will be easy 
for the current authors, and the reader, to apply this 

methodology to different item pools in approximately the 
same was that IRT is easy to apply to exams of very different 
domains. Second, considerable research has shown that 
the NBC has considerable practical utility (Orrù et al., 
2020; Stephens et al., 2018). The authors have routinely 
observed high degrees of predictive accuracy. And finally, 
some machine learning models are notoriously difficult to 
interpret. One of the goals we had for this research was to 
understand the automated classifications. In this regard, 
the parametric form of the NBC model (see below) is 
fairly easy to examine and provided considerable insight 
into how our models predicted Bloom’s levels (see Tables 
5, 6 and 7 in the results section).

The foundation for NBC model is Bayes’ theorem 
which describes the probability of an event in relation 
to prior knowledge of the event (the prior) and the 
observed occurrence of conditions related to the event 
(the evidence). In classification work, we are interested in  
P(c|d) , the probability of a document d (e.g., an exam 
item) belongs to class c (e.g., a Bloom’s level). Classification 
using the NBC model uses a “bag of words” approach 
(Jurafsky & Martin, 2000; Manning et al., 2009) where 
each document is broken into a set of unique tokens,  

1 2 kt ,t ,...,t  (syntax is ignored), and using Bayes’ theorem 
the probability of interest becomes, 1 2 kP(c|t ,t ,...,t ) , the 
probability of class c given the co-occurrence of these 
tokens:

1 2 k
1 2 k

1 2 k

P(t ,t ,...,t |c)P(c)P(c|d)=P(c|t ,t ,...,t )=
P(t ,t ,...,t )

						      (1)

where  1 2 kP(t ,t ,...,t |c)  is the conditional probability 
of tokens, 1 2 kt ,t ,...,t  , occurring in a document we know 

to be from class c.  P(c)  is the prior probability of a 

document belonging to class c. Finally, 1 2 kP(t ,t ,...,t )   is 
the probability of tokens in the data.

Applying the chain rule for repeated application of the 
conditional probability, Equation (1) becomes:

1 2 k, 2 3 k, k-1 k k

1 2 k

P(t |t ,...,t c)P(t |t ,...,t c)...P(t |t ,c)P(t ˘˘˘˘˘˘
P(t ,t ,...,t )

						      (2)
Note that when predicting, the denominator is identical 

for all classes and thus practical implementations ignore 
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this term and calculate based on values proportional to 
the probability in Equation (2).

The term “naïve” signals an assumption that all 
the terms in a document d are independent, given the 
category c. Under this assumption:

1 2 k, 1P(t |t ,...,t c)=P(t |c) 				    (3)

This assumption is plainly incorrect, but makes the 
calculation of the NBC feasible, because most practical 
applications would not provide the data needed to calculate 
these terms (i.e., words do not co-occur in documents) 
and estimates from even sizeable samples would be too 
small to be accurate (extremely large samples would be 
needed to estimate all interactions well). Research has 
demonstrated that the NBC has considerable predictive 
power despite this assumption (Stephens et al., 2018; 
Orrù et al., 2020).

Applying Equation (3) in each of the conditional 
probability terms in Equation (2), the probability of a 

document d being in class c, P(c|d)  is computed as: 

d
k

1 k n
P(c|d) P(c) P(t |c)

≤ ≤
∏∝ 			   (4)

given that the document belonging to class c, and 
nd is the number of tokens in a document used for 
classification.

The Naïve Bayes Classifier combines the Naïve Bayes 
probability model with a decision rule. The maximum a 
posteriori, or MAP, decision rule is a commonly used one 
where the document is assigned to the class that is most 
probable. According to Manning et al. (2009), the most 
probable class, mapc , can be estimated as:

d

^ ^ ^
map k

1 k nc C c C
c = arg max P(c|d) = arg max P(c) P(t |c)

≤ ≤∈ ∈
∏

						      (5)

In Equation (5), many conditional probabilities 
are multiplied, which can result in arithmetic 
underflow. Therefore, the computation in most NBC 
implementations is performed by adding logarithms of 
the probabilities (Manning et al., 2009). Thus, applying 

log(xy)=log(x)+log(y)  to Equation (5), mapc  is 
estimated as:

d

^ ^
map k

c C 1 k n

c = arg max P(c) + P(t |c)[log log ]
∈ ≤ ≤

∑ 	
						      (6)

In text classification, the estimated terms 
^
P(c)  and 

^
kP(t |c)  are computed as: 

^ cNP(c) 
N

= 					     (7)

where, cN  is the number of documents in class c and 
N is the total number of documents, and:

′
∈′∑

^ ct

ct
t V

TP(t|c) = 
T

				    (8)

where, ctT  is the number of occurrences of term t in 
training documents belonging to class c and t has to be 
part of the vocabulary, V, in the training documents.

In summary, the NBC model is a simple model, easily 
calculated, and based on two intuitive assumptions: that 
high base-rate classes should be predicted more often than 
low base-rate classes, and that having previously seen a 
token associated with a Bloom’s level should increase the 
likelihood of predicting that class for a new item. 

Evaluation
The performance of a predictive classifier is commonly 
evaluated using the four indices: Accuracy, Precision, 
Recall, and F1. In order to define these indices, the terms 
True Positive (TP), False Positive (FP), True Negative 
(TN), and False Negative (FN) must be introduced: TP 
refers to the number of cases predicted to be a given class 
that are actually in that class, whereas FP is the number of 
cases incorrectly predicted to be a class. TN is the number 
of cases correctly predicted to not being in a class. Lastly, 
FN is the number of cases belonging to a given class that 
the model classified incorrectly (as some other class).

The model Accuracy measures the number of correctly 
classified documents in proportion to the total number of 
items, computed as:

TP+TNAccuracy = 
TP+FP+TN+FN 			  (9)
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Precision measures the ability of a classification model 
to identify the correct classification while avoiding false 
positives:

TPPrecision = 
TP+FP 			   	 (10)

Recall measures the ability of a classification model 
to identify the correct classification while avoiding false 
negatives:

TPRecall = 
TP+FN 			   	 (11)

Within a single study when trade-offs are made 
between false positives and false negatives, then as 
precision increases, recall would decrease. There are 
instances where we favor maximizing either precision or 
recall, but for instances where an optimal balance of both 
is of interest the F1 measure combines the two indices 
as the harmonic mean of precision and recall, which 
differs from a simple average of the two in that it punishes 
extreme values in either index:

2 × ×
+

Precision RecallF1 = 
Precision Recall 		  	 (12)

Confusion Matrix
A final method of evaluation, analogous to a scatterplot 
in correlation analysis or a residual plot in regression 
analysis, is the “confusion matrix,” which is a matrix 
showing the accuracy as tallies of correct and incorrect 
classifications. The name confusion matrix emphasizes 
the value of this display to understand where the model is 
making classification mistakes (e.g., classifying a Bloom’s 
level 1 item as some other level, such as level 3). Perfect 
prediction is shown by a diagonal confusion matrix with 
zeros in the off diagonal. For typical (imperfect) results, 
the location of non-zero values indicates where a class 
was predicted to be another class and the frequency of 
these misclassifications. Examples of confusion matrices 
can be seen in the results section, along with our  
interpretations.

The next section describes how the NBC model is 
applied to textual data using natural language processing 
(NLP) and then reviews prior studies using ML and  
NLP.

2.3 � Natural Language Processing, Feature 
Engineering, and Prior Machine 
Learning Studies

Although the NBC model presented in the previous section 
may seem complete, in order to maximize prediction in 
practice, the words of items need to be pre-processed 
in a procedure called “feature engineering” where the 
predictor values are constructed from noisy input data 
using domain-specific knowledge to reduce noise and 
boost signal in the predictor features. This procedure is 
analogous to scoring items in conventional psychometric 
analyses. In the processing of natural language, this step 
of feature engineering is more complex and even more 
important. For example, the word forms of the lemma 
“analyze” should all probably be counted together as one 
token, which is commonly achieved by “stemming” the 
words (Porter, 1980; e.g., “Analyze,” “analyzes,” “analyzed,” 
and “Analyzing” are all stemmed to “analyz”; see Jurafsky 
& Martin, 2000 for more information). We say “probably” 
because there may be unusual circumstances in which 
stemming is unhelpful, and stemming works primarily 
on regular wordforms and verbs (e.g., the word “was” 
is stemmed to “wa”, “geese” is stemmed to “gees”). In 
an additional step, common, low-information words, 
called “stopwords,” are typically removed (i.e., ignored). 
Finally, spelling, punctuation, capitalization, and any text 
or font styles are typically removed. Thus, an item like: 
“Which ONE of the following rules apply to case 12?” 
would be analyzed with the following tokens: “follow”, 
“rule”, “appli”, “case.” The tallies that define the estimated 
condition probabilities would be for those tokens, and it is 
essential that identical feature engineering occurs during 
model training and later prediction. Again, an analogy to 
conventional psychometrics would be the importance of 
scoring items with the same key and procedures before 
a psychometric analysis and later when using the scores. 
Just as scoring items on an exam requires an answer key, 
effective feature engineering requires an understanding 
of the domain. In this study, we applied generic, English-
language methods that would not require tuning to the 
domain.

Prior research has attempted to automate the process 
of classifying exam materials based on Bloom’s taxonomy 
levels. Chang and Chung (2009) presented an online test 
system that extracted all the verbs from an input question, 
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matched them to an existing pool of keywords, each 
associated with one or more Bloom’s levels, and assigned a 
class to the question based on the matching results. Their 
results showed a 75% overall accuracy in classifying items 
of Bloom’s level 1. Similarly, Omar et al. (2012) proposed 
a keyword matching and rule-based approach in tackling 
item classification. Haris and Omar (2015) further 
refined this rule-based approach by analyzing the speech 
structure of the exam items and developing a set of rules 
to distinguish cognitive levels based on a combination 
of part-of speech, regular expressions, and predefined 
keywords. They also implemented a hybrid approach 
where the rule-based classification was integrated with 
statistical learning approach, which produced 86% F1 
averaged across levels.

Researchers have also implemented machine learning 
techniques in classifying exam materials, and various 
machine learning models have been utilized, including 
K-Nearest Neighbors (KNN), artificial neural networks 
(ANN), Support Vector Machines (SVM), and Naïve 
Bayes (NB). Among works dedicated to classifying 
exam questions into Bloom’s cognitive levels, Yahya 
and Osaman (2011) used Support Vector Machines to 
classify 272 open-ended questions, and the resulting 
model had satisfactory accuracy (ranged from 83% to 
90%) and precision (ranged from 50% to 100%) in the 
cross-validation sample, but low recall (ranged from 
9% to 64%). Yusof and Hui (2010) proposed an ANN 
model with various feature reduction methods, and the 
resulting precision ranged from 61% to 66% in the cross-
validation question sample. Yahya et al. (2013) compared 
the effectiveness of KNN, SVM, and NB models in 
scenarios where different number of terms were used in 
question representation. They concluded that, in terms of 
classification accuracy and typical F1, the performance 
of the KNN and NB machine learning models were 
comparable, and that of the SVM was slightly better than 
the other two. However, the performance of SVM varied 
the most when different number of terms were used for 
question representation.

The first research question simply addressed the degree 
of accuracy for an ML model predicting Bloom’s level of 
exam items. There are two primary reasons why additional 
research is required, beyond the studies summarized 
above. First, it is unclear the degree to which these prior 
studies used unedited items. When we apply this method 
to our exams, we do not plan on any manual editing of 

the items (as was done by Mohammad & Omar, 2020; 
see the Method section) before automated prediction of 
Bloom’s Level. The second reason for additional research 
was to establish the degree of accuracy in a new exam 
domain, similar to how local criterion-related validation 
is recommended for employee selection tests. Besides 
differences in wording usage across domains, there may 
also be differences in the base rates of the levels, which 
affects predictive accuracy.

Research Question 1:
How well does the ML model (Naïve Bayesian classifier) 
predict Bloom’s taxonomy levels of the test items?

The second research question addressed the degree of 
variability across levels. It stands to reason that prediction 
will be easier for lower and upper Bloom’s Levels; Level 1 
and 6 items can only be misclassified in a single direction, 
while items of intermediate levels can be misclassified in 
two ways. And variation in base rates of Bloom’s levels 
in an item pool would also contribute to potentially large 
variation in the predictive accuracy of any statistical 
model. 

Research Question 2: 
Does the ML model have similar predictive accuracy in 
all Bloom’s taxonomy levels?

As described earlier, sometimes the item writing 
practice prefers higher level items over level 1 items, 
while making no distinctions among higher level 
items (see Billings et al., 2020). Given previous finding 
on improved classification reliability in collapsing 
taxonomies (see Karpen & Welch, 2016; Plack et al., 
2007), it is suggested that simply classifying items into 
Remember vs. higher levels may have advantage in these 
scenarios. However, machine learning models are rarely 
investigated with various level-collapsing conditions. 
Therefore, we designed Research Question 3 to examine 
the performance of a binary NBC model, and to further 
compare it to that of the multinomial NBC model. 

Research Question 3: 
How well does the ML model distinguish items of Bloom’s 
taxonomy level 1 from items of level 2 and above?

Previous research has established the effectiveness 
of various machine learning models in classifying items 
using Bloom’s taxonomy. Most of the studies have adopted 
the common approach to split a sample of items from 
one content-domain into training and cross-validation 
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subsets, but there is a lack of work demonstrating the 
performance of ML models when applied to items of a 
different domain. Although the context-specific nature of 
the taxonomy implies that a model effectively classifying 
items from one content domain may not transfer to items 
from another domain, this is rarely tested in empirical 
studies. Therefore, we address the following research 
question:

Research Question 4: 
How well does the model fit in one domain cross-validate 
in another domain?

Finally, to better understand how ML models 
contextualize Bloom’s levels for our domain and to 
better understand how the predictions were made, we 
were interested in interpreting our ML models. Some 
literature on Bloom’s levels emphasizes the role of verbs 
in classifying items, but our experience suggests that this 
linkage is likely to be stronger for learning objectives 
or constructed response items than for multiple-choice 
exam items. Therefore, our last research question was:

Research Question 5: 
What aspects of items influence the predictions of the 
model?

3.  Method

3.1  Item Samples
The units of analysis in this study are items and two 
samples of items were used. Most of our analyses used 
a sample of 141 English-language, four-option multiple-
choice questions extracted from online practice exams 
which assessed information technology related topics. 
Only items stated in the form of a question were used. 
This sample is referred to as the MCQ dataset. This sample 
is probably on the smaller end of the range of operational 
item pools. 

The second sample was used to address RQ4 about the 
crossvalidity of the fitted NBC model and was provided in 
the supplementary materials of the Mohammad and Omar 
(2020) study, and consisted of 141 English-language, 
open-ended questions with those authors’ classification 
of Bloom’s taxonomical level for each item. (It is a 
coincidence that both samples of items had 141 items.) 
A careful review of this dataset revealed that the “items” 
were actually a mix of learning objectives and edited 

items. The items were edited to remove any “scenario” 
or other extraneous words from the item. For example, 
the literal text of a Level 2 item was: “Explain what is 
happening... ” These items had heterogeneous response 
formats (multiple-choice and constructed response) and 
covered various educational content domains, including 
computer science, English, mathematics, history, etc. 
These items will be referred to as the cross-domain 
dataset. 

3.2 Procedure
Rater Judgment
Items of the MCQ dataset were classified by a single rater 
into the six revised Bloom’s taxonomy levels based on the 
words of the item. After classification, due to a lack of 
items in the upper levels, levels 4, 5 and 6 were collapsed 
into a single class. The NBC was trained to predict items 
in the four classes: Bloom’s level 1 (Remember), level 2 
(Understand), level 3 (Apply), and level 4 and above 
(Analyze, Evaluate, and Create).

To assess cross-domain classification, we used the 
items of the cross-domain dataset and the class labels 
provided by Mohammad and Omar (2020), which used 
the original 1956 version of Bloom’s taxonomy. However, 
because items labeled as level 4 or above were collapsed 
into a single class, we determined that these class labels 
were fully consistent with the NBC model trained on the 
MCQ datasets (using the revised Bloom’s taxonomy). This 
model was used to predict the Bloom’s taxonomy levels 
of these cross-domain items. In addition, both authors of 
the current study also independently classified about 60% 
of items in the cross-domain dataset. The performance 
of our manual classification was compared to that of the 
NBC model.

Feature Extraction
Some stems of the MCQ dataset items were composed 
just of a single question, and others had one or two 
preceding background/scenario sentences. We parsed the 
stems into “scenario” and “question” parts and only the 
“question” was used in the later analysis (any additional 
words in the stem and the words of the response options 
were ignored). The “question part” of the stem was the 
full sentence or question phrase that ended in a question 
mark. For example, the question part of the stem is 
italicized in this example: “The ACME webserver runs 
on a Linux host in an off-premises data center. If some 
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webpages work and others are giving errors, which of the 
following is the best first step in trouble-shooting the website 
errors?” This was done (using Excel functions) to exclude 
scenario/background words that are likely to be used in 
ways that may not generalize well; this procedure was 
adopted because it improved our predictive results. A 
similar step had already been conducted for the items of 
the cross-domain dataset.

Using R packages ‘tm’ and ‘SnowballC,’ the words 
of each item were normalized by the following steps: 
converting to lower case; removing punctuation, numbers, 
and stopwords (from the default ‘tm’ English-language 
stopword list); stemming; and tokenization. The dataset 
was converted to a document-term matrix (DTM), where 
each document is in a row and the columns representing 
terms appearing across all items in the corpus. The 
individual cells of the matrix were 1 if the term appeared 
one or more times in the document and zero otherwise.

Classification
Using R package ‘caret’ the items were randomly split into 
70% training and 30% testing samples. To ensure similar 
base rates in the training and testing samples, the splitting 
procedure stratified on Bloom’s classifications prior to 
sampling. Using the naiveBayes() function of the ‘e1071’ 
package, the NBC model was fit to the training data using 
the default settings. Then the predict() function was used 
(with threshold = 0.001 and eps = 0) to predict the Bloom’s 
level for both the training and testing samples. As in other 
prediction contexts, it is to be expected that the NBC 
model would be highly accurate in the training sample, 
whereas the performance in the testing sample provides a 
lower but more ‘honest’ estimate of the expected accuracy 
in future samples drawn from the same population.

4.  Results
The MCQ dataset was split into a training sample with 
101 questions and a cross-validation sample with 40 
questions. The split was stratified on the labeled Bloom’s 
level, but otherwise random. As shown in Table 2, the 
base rates for items in each Bloom’s level were similar in 
both samples with about 45% of the questions from level 1 
(Remember), about 17% level 2 (Understand), about 25% 
level 3 (Apply), and about 13% level 4 or higher (Analyze, 
Evaluate, and Create). The feature extraction process in 
the training sample resulted in a total of 357 unique terms.

RQ1. Research question 1 addresses overall accuracy: 
How well does the ML model (Naïve Bayesian classifier) 
predict Bloom’s taxonomy levels of the test items? The 
overall performance of the NBC model is shown in Table 
2. The training sample results are shown on the left and the 
cross-validation sample on the right. Prediction is almost 
perfect in the training sample, but these results overstate 
the cross-validated accuracy. In the cross-validation 
sample, the model had an overall accuracy = 0.775, F1 = 
0.762, with balanced Precision = 0.756 and Recall = 0.775. 
These measures are good and substantially better than 
chance (0.25) or the “no information rate” (0.45). The 
Kappa level of 0.67 would be interpreted as “substantial” 
agreement for human judgments (Landis & Koch, 1977). 
However, performance varied across cognitive levels. 
RQ2. Research question 2 addressed variation in 
prediction across levels: Does the ML model have similar 
predictive accuracy in all Bloom’s taxonomy levels? As 
shown in Table 2, the model performance was the best 
for level 1 (F1 = 0.889) and level 4 or higher (F1 = 0.909) 
items, satisfactory for level 3 (F1 = 0.762), and not very 
good for level 2 (F1 = 0.333). As shown in the confusion 
matrix, the model incorrectly classified Level 2 items as 
belonging to other levels, as well as other levels as level 
2. Only two of the seven Level 2 items were classified 
correctly (29%), and only two of the five items classified 
as Level 2 were actually Level 2 (40%).
RQ3. Research question 3 was: How well does the ML 
model distinguish items of Bloom’s taxonomy level 1 from 
items of level 2 and above? To investigate the effectiveness 
of NBC in distinguishing low level (i.e., Remember) items 
from items greater than level 1, a two-level NBC was 
tested in the MCQ dataset all items labeled level 2 and 
higher were collapsed into a single class. The base rates for 
level 1 vs. level 2 and above items were around 0.45 and 
0.55 in both the training and the cross-validation sample. 
As shown in Table 3, in cross-validation the two-level 
NBC model had an accuracy of 0.854 and F1-measure of 
0.842. Clearly, this model has a high degree of accuracy 
in this domain distinguishing level 1 items from those of 
Bloom’s level 2 and above.
RQ4. How well does the model fit to items of one domain 
cross-validate in another domain? To address RQ4, the 
four-level NBC trained in the MCQ dataset was applied 
to predict the levels of the 141 items in the cross-domain 
dataset. As shown in Table 4, the cross-domain sample 
has a different set of class base rates compared to the 
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MCQ dataset. Specifically, most of the items (about 
54.6%) in this sample were of level 4 and higher, while 
the largest class proportion of the MCQ sample was about 
45% for level 1 items. The NBC model showed a lack of 
effectiveness in predicting item levels in the cross-domain 
sample, with overall accuracy = 0.213 and F1 = 0.218.

Reliability of classification into Bloom’s taxonomy. To 
further investigate the poor generalization to the cross-
domain pool of items, we estimated the reliability of 
the item classifications in the cross-domain sample. 
Since reliability limits validity, if these classifications are 
unstable, they are unlikely to be cross-validated. The two 

Training sample Cross-validation sample

Bloom’s level 1 2 3 4 Overall 1 2 3 4 Overall

Descriptives

number of items 45 17 25 14 101 18 7 10 5 40

base rate 0.446 0.168 0.248 0.139 1.000 0.450 0.175 0.250 0.125 1.000

Confusion matrix (rows = predicted, columns = actual)

Level 1 44 0 0 0 44 16 1 1 0 18

Level 2 0 17 0 0 17 2 2 1 0 5

Level 3 0 0 24 0 24 0 3 8 0 11

Level 4 1 0 1 14 16 0 1 0 5 6

Performance by class

Precision 1.000 1.000 1.000 0.875 0.983 0.889 0.400 0.727 0.833 0.756

Recall 0.978 1.000 0.960 1.000 0.980 0.889 0.286 0.800 1.000 0.775

F1-measure 0.978 1.000 0.960 1.000 0.980 0.889 0.333 0.762 0.909 0.762

Overall model performance

Accuracy 0.980 0.775

95% CI of Accuracy (0.930, 0.998) (0.616, 0.892)

NIR 0.446 0.450

p (Accuracy > NIR) 0.000 0.000

Kappa 0.972 0.673

Note. Bloom’s level: 1 = Remember, 2 = Understand; 3 = Apply; and 4 = collapsed levels Analyze, Evaluate, and Create. The Overall Precision, 
Recall, and FI-measure statistics were calculated as the weighted average of the class statistics; NIR = no information rate, which is taken to 
be the largest class percentage in the dataset; p (Accuracy > NIR) = the p-value of the one-sided test that the accuracy is significantly higher 
than NIR; Kappa = Cohen’s Kappa coefficient which measures the agreement between predicted and observed classes.

 Table 2. Results of the four-level NBC in the MCQ dataset
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authors independently re-classified about 60% of the items 
in the cross-domain sample, and these classifications were 
compared to the original labels provided by Mohammed 
and Omar (2020). Our classifications agreed with those of 
provided by Mohammed and Omar about 61%. Among 
the 49 items both authors classified, 24 (49%) were an 
exact match. The Pearson correlation between the authors’ 

classifications was 0.68, while those between either 
author and the original labels were 0.79. Interpreted as a 
reliability estimate, this degree of reliability is modest, but 
comparable to other studies of applying Bloom’s taxonomy 
(and might be slightly conservative as compared to a 
similar analysis using Spearman correlations). However, 
this level of reliability can only explain a small degree of 

Training sample Cross-validation sample

Bloom’s level Level 1 Level 2 and 
above Level 1 Level 2 and 

above

Descriptives

number of items 44 56 19 22

base rate 0.440 0.560 0.463 0.537

Confusion matrix (rows = predicted, columns = actual)

Level 1 43 0 16 3

Level 2 and above 1 56 3 19

Performance by class

Precision 1 0.842

Recall 0.977 0.842

F1-measure 0.989 0.842

Overall model performance

Accuracy 0.99 0.854

95% CI of Accuracy (0.946, 1.000) (0.708, 0.944)

NIR 0.560 0.537

p (Accuracy > NIR) 0.000 0.000

Kappa 0.980 0.706

 Note. Bloom’s levels were grouped into two classes: Level 1 represents the Knowledge, or Remember, level, while Level 2 and above 
includes levels Understand, Apply, Analyze, Evaluation, and Create. NIR = no information rate, which is taken to be the largest class 
percentage in the dataset; p (Accuracy > NIR) = the p-value of the one-sided test that the accuracy is significantly higher than NIR; 
Kappa = Cohen’s Kappa coefficient which measures the agreement between predicted and observed classes

Table 3. Results of the two-level NBC in the MCQ dataset
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the lack of generalization to the cross-domain dataset 
items.
RQ5. Our final research question addressed how 
predictions are made by the NBC model. Many past 
applications of Bloom’s taxonomy have emphasized 
the role of verbs. Tables 5 and 6 show detailed numeric 
examples of predictions for two sample items. Table 7 
shows the tokens that were most indicative of the four 
classes.

Table 5 shows how example item 63 would be 
classified. This item used the verb “requir” and also had 

the terms “creat”, “new”, and “plan”. All other words in the 
item were stopwords. We had classified the item as level 1 
because the term “plan” was processed from “Plan” which 
is a proper noun in the context, and the question asks 
about the basic settings, or requirements, of the notion 
“Plan.” The NBC model fitting shows that all four of these 
words were present in level 1 items in the training sample, 
and generally more common or absent for higher levels. 
Although “requir” or “creat” were more common in all 
levels above 1, “requir” did not appear in any level 2 or 
3 items, “new” did not appear in any level 3+ items, and 

Table 4. Results of applying the four-level NBC in the cross-domain dataset

Cross-domain validation sample

Bloom’s level 1 2 3 4 Overall

Descriptives

number of items 26 23 15 77 141

base rate 0.184 0.163 0.106 0.546 1.000

Confusion matrix (rows = predicted, columns = actual)

Level 1 6 4 1 25 36

Level 2 2 3 2 15 22

Level 3 10 9 7 23 49

Level 4 8 7 5 14 34

Performance by class

Precision 0.167 0.136 0.143 0.412 0.293

Recall 0.231 0.130 0.467 0.182 0.213

F1-measure 0.194 0.133 0.219 0.252 0.218

Overall model performance

Accuracy 0.213

95% CI of Accuracy (0.148, 0.290)

NIR 0.546

p (Accuracy > NIR) 1.000

Kappa -0.038
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Class c1 c2 c3 c4

Prior probability ^
1P(c ) 

^
2P(c ) 

^
3P(c ) 

^
4P(c ) 

0.4455 0.1683 0.2475 0.1386

                    Likelihood of t given c

Term
^

1P(t|c )
^

2P(t|c )
^

3P(t|c )
^

4P(t|c )
requir 0.0444 0.0000 0.0000 0.1429

creat 0.0889 0.1176 0.1200 0.1429

new 0.0222 0.0588 0.0000 0.0000

plan 0.0222 0.0000 0.0000 0.0000

Posterior probability ^
1P(c |d)

^
2P(c |d)

^
3˘˘˘

^
4P(c |d)

8.6664E-07 0 0 0

Note: Item 63 was classified as L1 by the authors and predicted as L1 by these calculations. Actual implementation details vary slightly 
to improve numerical precision (see the R code in e1071.predict()).

Table 5. An example of the prediction calculations; predicting level for item 63.

Class c1 c2 c3 c4

Prior probability ^
1P(c ) 

^
2P(c ) 

^
3P(c ) 

^
4P(c ) 

0.4455 0.1683 0.2475 0.1386

               Likelihood of t given c

Term

^
1P(t|c )

^
2P(t|c )

^
3P(t|c )

^
4P(t|c )

workflow 0.0222 0.1176 0.0800 0.1429

adjust 0.0222 0.0588 0.0000 0.0000

audio 0.0222 0.0000 0.0000 0.0000

transit 0.0222 0.0000 0.0000 0.0000

Posterior probability
^

1P(c |d)
^

2P(c |d)
^

3˘˘˘
^

4P(c |d)

1.0864E-07 0 0 0

 Note: Item 80 was classified by the authors as L2 and predicted to be L1 by these calculations.

Table 6. A second example of the prediction calculations; predicting level for item 80.
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“plan” did not appear in any items above level 1. Thus, the 
maximum probability was associated with level 1, which 
was chosen as the predicted value and the zero conditional 
probabilities in Table 5 drive the classification.

The calculations in Table 5 (and 6) show zero 
probabilities where the word did not appear in any item 
for a level, but the e1071 package actually compares the 
probability to a parameter, ‘eps’ (short for epsilon-range, 0 
by default) and, when the probability is less than or equal 
to ‘eps,’ substitutes the parameter value ‘threshold’ (0.001, 
by default). Using these values, classes 2-4 have non-zero 
values, but class 1 remains the predicted class because 

the ‘threshold’ value of 0.001 is very small. For example, 
the conditional probability of ‘requir’ is somewhat larger 
(0.1429 for class 4 and 0.0444 for class 1; 3.2 times larger) 
but the threshold value of 0.001 for ‘new’ in class 4 is 22.2 
times smaller than the conditional probability for class 1 
(0.0222). 

As a second example, show in in Table 6, item 80 
used the verb “adjusts” and also has the terms “workflow,” 
“audio,” and “transition.” It was labeled as level 2 because it 
assesses the workflow of performing a task, which requires 
understanding the processes, but was misclassified as 
level 1 by the NBC model. The calculations are clear: 

c1 c2 c3 c4

term ^
1P(t|c ) term ^

2P(t|c ) term ^
3P(t|c ) term ^

4P(c |d)

follow 0.7111 follow 0.2353 use 0.2000 creat 0.1429

option 0.4000 choos 0.2353 analyst 0.2000 workflow 0.1429

use 0.3778 campaign 0.1765 report 0.2000 segment 0.1429

user 0.2000 action 0.1176 campaign 0.1200 express 0.1429

box 0.2000 creat 0.1176 creat 0.1200 requir 0.1429

dialog 0.2000 data 0.1176 data 0.1200 result 0.1429

panel 0.2000 can 0.1176 user 0.1200 shown 0.1429

imag 0.1333 xxxx 0.1176 busi 0.1200

layer 0.1333 purpos 0.1176 practition 0.1200

order 0.1111 workflow 0.1176 best 0.1200

clip 0.1111 edit 0.1176 task 0.1200

take 0.1111 form 0.1176

action 0.1111 method 0.1176

work 0.1111 nondestruct 0.1176

select 0.1111 set 0.1176

tool 0.1111 three 0.1176

two 0.1176

Note: These terms are stemmed, as described in the text.

Table 7. Terms with highest conditional probability for each class
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although the term “workflow” was much more likely to 
be associated with levels above level 1 (3.6 to 6.4 times 
more likely) the other terms, particularly “audio” and 
“transition” did not appear in higher level items, leading 
to the maximum likelihood for classification as level 1.

Table 7 shows the tokens with the highest conditional 
probabilities (>0.10) for each class. We observe three 
interesting patterns. First, “follow” and “option” have 
very high conditional probabilities in class 1 because 
many level 1 questions use “[W]hich of the following 
options…”. Second, “creat” shows up in the top lists for 
all classes except for c1. Finally, there is a trend to shorter 
lists with lower top conditional probabilities for higher 
levels, which probably indicates that the vocabulary of 
level 3-6 items (in classes c3 and c4) is more diverse. If so, 
this reinforces the observation that much of the predictive 
power of the NBC model comes from zero probabilities. 

It can be hard to determine whether a token was used 
as a verb in the original question. For example, the word 
“follow” is usually a verb, but the token “follow” shown 
in Table 7 was rarely used as a verb. Our interpretation 
of Table 7 is that while verbs are present, they do not 
dominate, nor do they align particularly well with the 
exemplar verbs shown in Table 1. Thus, one summary of 
our findings for RQ5 is that the NBC model finds tokens 
characteristic of Bloom’s levels to contextualize Bloom’s 
taxonomy for a domain, and in a highly contextualized 
model, nouns and other parts of speech play a significant 
role; also, zero conditional probabilities seem to play a key 
role by excluding levels which never used a token.

5. Discussion
We applied NLP-based feature engineering to a dataset 
of IT certification items, fit a Naïve Bayesian Classifier 
(NBC) model, and cross-validated the model in a hold-out 
sample from the same domain and to a dataset of diverse 
items. The model performed reasonably well in cross-
validation within the same domain (77.5%), although 
classification into Bloom’s level 2 was weak (only 29% of 
level 2 items were classified correctly). A model designed 
to distinguish level 1 from higher levels (i.e., level 2 and 
above) was somewhat more effective (85.4% accuracy). 
But our IT certification NBC model generalized poorly to 
a new domain (overall accuracy was 21.3%). The feature 
engineering methods we used could be applied to any 

domain and do not require the preparation of a domain-
specific knowledge base. Our results could be seen as an 
automated method for contextualizing Bloom’s taxonomy 
for use in a specific domain and the Naïve Bayesian model 
was sufficiently interpretable to provide insights about the 
classifications.

We introduced this research as a way to improve 
the reliability of classifications into Bloom’s taxonomy 
for exam items while reducing the time and labor 
requirements. The accuracy of about 78%, while being 
far less than 100%, must be sufficient for general use 
because this is comparable with the reliability of Bloom’s 
classification performed by subject matter experts, 
although some programs may prefer that this is a second 
opinion that either confirms a SME judgment or causes 
the classification of an item to be more carefully reviewed. 
Either way, this approach shows great promise to improve 
both the efficiency and reliability of classification. One 
catch, however, is that this method can only be applied to 
a sizable pool that has been manually classified. We used a 
training sample of 100 items. Thus, the greatest efficiency 
gains may be had in programs where item-writing and 
Bloom’s level classifications are an on-going issue, or 
where an existing pool of labeled items are available. On 
the other hand, having obtained adequate results with a 
sample of 100 items means this modeling is likely feasible 
for most exam programs, which often have larger pools.

Automated classification may also benefit programs 
where it is important to identify the Bloom’s level of an 
item early. For example, if an exam blueprint specifies the 
Bloom’s level of items written for an exam objective, then 
it would greatly improve the efficiency of item-writing if 
the level of the item were automatically checked as soon 
as the item was written. If an inappropriate level were 
detected, an automated warning could be given, and the 
SME author could then adjust the item before submitting 
it. 

A theme in prior research on the reliability of Bloom’s 
level classification has been to fold the original six levels 
into a streamlined taxonomy of three levels. Because of 
a lack of items in Bloom’s levels 4-6 in our dataset, we 
collapsed these items into a single class. It seems very 
likely that this also improved the performance of our 
NBC model, and we would see reduced performance 
for a model predicting all six levels, particularly if there 
were also different base rates (e.g., most items were 
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written to address lower- or middle-levels). In practice, 
in the absence of a compelling rationale for using a six-
level taxonomy, practitioners should consider a collapsed 
taxonomy with two to four levels. Our study and the prior 
literature provide a few choices:

•	 level 1; levels 2+3; levels 4+5+6 (Karpen & Welch, 
2016)

•	 levels 1+2; levels 3+4; levels 5+6 (Plack et al., 2007)
•	 level 1; levels 2+3+4+5+6 (current paper)
•	 level 1; level 2; level 3; levels 4+5+6 (current paper)
In our study, cross-validated accuracy rose to over 

85% when we fit a dichotomous model classifying items 
into Bloom’s level 1 vs. level 2 and above. Because this is 
a modest improvement over the 77.5% seen for the “full” 
model (which needed to collapse levels 4, 5, and 6), this 
result will mainly affect programs that are primarily 
concerned about identifying level 1 items.

We chose the Naïve Bayesian model because it was 
(relatively) interpretable. If we had chosen an artificial 
neural network, for example, it would have been nearly 
impossible to interpret the model. A decision tree is often 
touted as an interpretable model, but most real-world 
applications of decision or classification and decision 
trees are too complex to easily understand (see Sinharay 
2016 for an example). This is partially because other 
models incorporate information about interactions that 
are ignored by “naïve” Bayesian predictive models.

A reviewer asked about the use of Bloom’s taxonomy 
in writing these two samples. If Bloom’s taxonomy was 
used, the version may affect our results. On the other 
hand, if the item writers did not target specific levels 
of Bloom’s taxonomy then these results will especially 
generalize to pools written under similar conditions. 
We have little information about how these items were 
written. The items of the cross-domain dataset were 
heterogeneous and probably varied in the authors’ use of 
Bloom’s taxonomy. 

Regarding the verbs associated with Bloom’s levels, 
in this study verbs were important but not to the degree 
that they are emphasized in the literature on Bloom’s 
taxonomy. The verbs associated with Bloom’s levels are 
more likely to apply to learning objectives than items 
written to assess those objectives. For example, it is very 
plausible that a Level 3 learning objective about applying 
psychometric theory to reliability would use verbs like 
“apply” and “choose.” But an item written to address this 
point is unlikely to use these verbs. For example, a scenario 

might specify circumstances and then the question might 
be “Which of the following is the best way to improve 
the reliability of these exam scores?” Instead, differences 
in word usage across levels seemed to be the main 
determinant of classification. In the examples presented 
in Tables 5 and 6, words absent from some levels exerted 
a strong influence by eliminating those levels. 

One challenge and opportunity for psychometricians 
applying machine learning models is the need to “tune” 
ML models. For example, to avoid arithmetic underflow, 
most of the software packages (e.g., “e1071” in R) 
calculate conditional probabilities by adding logarithms 
of the probabilities (Manning et al., 2009), which requires 
non-zero probabilities because log(0) is undefined in 
that case. In longer documents (with many tokens) a 
zero conditional probability can have an out-sized effect. 
And zero conditional probabilities may simply be due 
to not having a very large sample size. In practice, zero 
probabilities are not uncommon, and one way to deal 
with observed zero probabilities is to replace them with a 
very small value. Another solution is Laplace smoothing, 
where a constant “pseudocount” is added to each class 
in Equation (7). For example, if a smoothing constant 
of 1.0 is used, the smallest conditional probabilities will 
be 1/N. In trial runs (in this study, and other studies), 
we have observed that both practices slightly lowered 
crossvalidation performance. Formal or informal 
“tuning” of such parameters is a well-recognized aspect 
of ML models (Orrù et al., 2020; Putka et al., 2018). 
While parameter tuning is sometimes suggested as an 
advantage of machine learning models, tuning represents 
a challenge to practitioners. We strongly recommend that 
as psychometricians incorporate ML models into their 
research, that they also report on their tuning of model 
parameters.

5.1 � Implications for Researchers and 
Practitioners

One open question about application of this technology 
to exam development is how a NBC model will change 
over the lifetime of an item pool, especially in the face 
of non-random changes to the items. For example, 
imagine that a domain should not include Bloom’s level 
1 items and the exam program implements a check based 
on such a model that informs item-writers when their 
item seems to be a level 1 item. Item writers are likely to 
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make the smallest possible change to the item to ensure 
that it measures comprehension or application. It seems 
far less likely that the item will be modified to measure 
cognitive processes of a much higher Bloom’s level. This 
may influence the item pool in ways that cause the NBC 
model to become invalid over time. For example, we saw 
that “Which of the following…” items were more likely 
to be classified as level 1 because the tokens “follow” and 
“option” were disproportionately associated with level 1. 
If those terms are used in items that are then modified 
to be level 2 or higher, then the model’s predictions will 
become less accurate over time. As a result, it may become 
important to continue to update the model as new items 
are added to the item pool.

This paper illustrates how a simple model, 
implemented in freely-available R packages, can be used 
to predict important aspects of exam items. Although the 
topic of this paper is the prediction of Bloom’s taxonomy, 
the same methods can be used to predict other important 
aspects of exam items, such as difficulty, item quality, 
appropriateness of an item’s topic, etc. These predictions 
could be made using the same methodology, although it 
is possible that different feature engineering steps might 
be required to improve the performance of these different 
models. For example, to predict the appropriateness of 
an item’s topic, it seems likely that a corpus of written 
information (e.g., learning materials) classified by 
topic may be needed to effectively train a classifier with 
adequate accuracy and domain-specific stopword lists 
may be needed. However, there seems little doubt that 
predictions like these will play an increasingly important 
role in improving the exam development process.

5.2 � Limitations and Future Directions
It is reasonable to assume that results will be affected by 
the specific item domain, the size of the item samples, and 
the distribution of items across Bloom’s levels. Our item 
samples were on the smaller end of operational item pools. 
Therefore, these results need replication in additional 
samples of varying size to understand the range of 
outcomes that are likely and the effect of item sample size 
on the results. We are currently extending this research to 
encompass a greater diversity of exam items and explore 
the generalizability of the ML models to new exams within 
the same general domain and across domains. We are 

also examining additional feature engineering to support 
robust ML models that do generalize across domains.

We chose the Naïve Bayesian model because it is easily 
trained, relatively easy to interpret, and has a track record 
of success, but where interpretability is less important 
and computational resources are available, other models 
like support vector machines (SVM) and various types of 
artificial neural networks (such as convolutional neural 
networks; CNN) may produce higher levels of accuracy 
by using more parameters.

In addition, it is possible that more sophisticated 
feature engineering, especially in larger samples of 
items, might produce better results. In larger samples, 
considerable additional context can be embedded in the 
model by using n-grams as tokens. Bigrams and trigrams, 
for example, preserve the order of word pairs and triples. 
If most of the important interactions between words are 
present in word pairs or triples, the use of bigrams or 
trigrams will capture this source of information. As an 
example of this type of interaction, using unigrams, the 
phrases words “not safe” and “safe” are coded in a way that 
fails to capture the negation, but bigrams and trigrams 
could capture this negation. However, many bigrams and 
trigrams are likely to be unique (and thus not helpful) and 
larger samples of items would be needed to fully utilize 
this feature engineering approach.

6. References
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., 

Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, 
J., & Wittrock, M. C. (2001). A taxonomy for learning, 
teaching, and assessing: A revision of Bloom’s Taxonomy 
of Educational Objectives (Abridged Edition). New 
York: Longman.

Athanassiou, N., McNett, J., & Harvey C. (2003). 
Critical thinking in the management classroom: 
Bloom’s taxonomy as a learning tool. Journal of 
Management Education, 27(5), 555-575. https://doi.
org/10.1177/1052562903252515

Billings, M. S., DeRuchie, K., Hussie, K., Kulesher, A., Merrell, 
J., Morales, A., Paniagua, M. A., Sherlock, J., Swygert, 
K.A., & Tyson, J. (2020). Constructing Written Test 
Questions for the Basic and Clinical Sciences (6th ed). 
Philadelphia, PA: National Board of Medical Examiners

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & 
Krathwohl, D. R. (1956). Taxonomy of educational 

https://doi.org/10.1177/1052562903252515
https://doi.org/10.1177/1052562903252515


Using Machine Learning to Predict Bloom’s Taxonomy Level for Certification Exam Items

Vol 23(Special Issue 1) | 2022 | http://jattjournal.net/� Journal of Applied Testing Technology70

objectives; the classification of educational goals; 
Handbook I: Cognitive domain. New York, NY: 
Longmans, Green.

Buckwalter, J. A., Schumacher, R., Albright, J. P., & Cooper, R. 
R. (1981). Use of an educational taxonomy for evaluation 
of cognitive performance. Journal of Medical Education, 
56(2), 115-21. https://doi.org/10.1097/00001888-
198102000-00006

Chang, W., & Chung, M. (2009). Automatic applying 
Bloom’s taxonomy to classify and analysis the cognition 
level of English question items. 2009 Joint Conferences 
on Pervasive Computing (JCPC), 727-734. https://doi.
org/10.1109/JCPC.2009.5420087

Cilliers, F. J., Schuwirth, L. W., Herman, N., Adendorff, H. 
J., & van der Vleuten, C. P. (2012). A model of the pre-
assessment learning effects of summative assessment 
in medical education. Advances in Health Sciences 
Education: Theory and Practice, 17(1), 39-53. https://doi.
org/10.1007/s10459-011-9292-5

Crowe, A., Dirks, C., & Wenderoth, M. (2008). Biology in 
bloom: Implementing Bloom’s taxonomy to enhance 
student learning in biology. CBE Life Sciences Education, 
7(4), 368-381. https://doi.org/10.1187/cbe.08-05-0024

Haris, S. S., & Omar, N. (2015). Bloom’s taxonomy question 
categorization using rules and n-gram approach. Journal 
of Theoretical and Applied Information Technology, 7(3), 
401-407.

Jensen, J. L., McDaniel, M. A., Woodard, S. M., & Kummer, 
T. (2014). Teaching to the test… or testing to teach: 
Requiring higher order thinking skills encourage greater 
conceptual understanding. Educational Psychology 
Review, 26, 307-329. https://doi.org/10.1007/s10648-
013-9248-9

Jurafsky, D., & Martin, J. H. (2000). Speech and language 
processing: An introduction to natural language 
processing, computational linguistics, and speech 
recognition. Upper Saddle River, NJ: Prentice Hall.

Karpen, S. C., & Welch, A. C. (2016). Assessing the inter-
rater reliability and accuracy of pharmacy faculty’s 
Bloom’s Taxonomy classifications. Currents in Pharmacy 
Teaching and Learning, 8, 885-888. https://doi.
org/10.1016/j.cptl.2016.08.003

Landis, J. R., & Koch, G. G. (1977). The measurement of 
observer agreement for categorical data. Biometrics, 33, 
159–174. https://doi.org/10.2307/2529310

Manning, C. D., Raghavan, P., & Schütze, H. (2009). 
An introduction to information retrieval (Online 
Edition). Cambridge University Press: Cambridge, 

England. https://nlp.stanford.edu/IR-book/pdf/
irbookonlinereading.pdf

Mesic, V., & Muratovic, H. (2011). Identifying predictors 
of physics item difficulty: A linear regression 
approach. Physical Review Special Topics - Physics 
Education Research, 7. https://doi.org/10.1103/
PhysRevSTPER.7.010110

Mohammed, M., & Omar, N. (2020). Question classification 
based on Bloom’s taxonomy cognitive domain using 
modified TF-IDF and word2vec. PLoS ONE. 15(3). 
https://doi.org/10.1371/journal.pone.0230442

Nkanginieme, K. E. O. (1997). Clinical diagnosis as a 
dynamic cognitive process: Application of Bloom’s 
Taxonomy for educational objectives in the cognitive 
domain. Medical Education Online, 2:1. https://doi.
org/10.3402/meo.v2i.4288

Orrù, G., Monaro, M., Conversano, C., Gemignani, A., & 
Sartori, G. (2020). Machine learning in psychometrics 
and psychological research. Frontiers in Psychology, 10, 
2970. https://doi.org/10.3389/fpsyg.2019.02970

Plack, P.M., Driscoll, M., Marquez, M., Cuppernull, L., 
Maring, J., & Greenberg, L. (2007). Assessing reflective 
writing on a pediatric clerkship by using a modified 
Bloom’s Taxonomy. Ambulatory Pediatrics, 7, 285-291. 
https://doi.org/10.1016/j.ambp.2007.04.006

Porter, M.F. (1980). An algorithm for suffix stripping. 
Program, 14, 130-137. https://doi.org/10.1108/eb046814

Putka, D. J., Beatty, A. S., & Reeder, M. C. (2018). Modern 
prediction methods: New perspectives on a common 
problem. Organizational Research Methods, 21, 689-732. 
https://doi.org/10.1177/1094428117697041

Rosca, C. V. (2004). What makes a science item difficult? A 
study of TIMSS -R items using regression and the linear 
logistic test model. Unpublished doctoral dissertation, 
Boston College.

Sinharay, S. (2016). An NCME Instructional Module on 
Data Mining Methods for Classification and Regression. 
Educational Measurement: Issues and Practice, 35, 38-54. 
https://doi.org/10.1111/emip.12115

Stephens, C. R., Huerta, H. F., & Linares, A. R. (2018). When 
is the Naïve Bayes approximation not so naïve? Machine 
Learning, 107, 397-441. https://doi.org/10.1007/s10994-
017-5658-0

Tan, Y. T., & Othman, A. (2013). The relationship 
between complexity (taxonomy) and difficulty. 
AIP Conference Proceedings, 1522, 596. https://doi.
org/10.1063/1.4801179

https://doi.org/10.1097/00001888-198102000-00006
https://doi.org/10.1097/00001888-198102000-00006
https://doi.org/10.1109/JCPC.2009.5420087
https://doi.org/10.1109/JCPC.2009.5420087
https://doi.org/10.1007/s10459-011-9292-5
https://doi.org/10.1007/s10459-011-9292-5
https://doi.org/10.1187/cbe.08-05-0024
https://doi.org/10.1007/s10648-013-9248-9
https://doi.org/10.1007/s10648-013-9248-9
https://doi.org/10.1016/j.cptl.2016.08.003
https://doi.org/10.1016/j.cptl.2016.08.003
https://doi.org/10.2307/2529310
https://doi.org/10.1103/PhysRevSTPER.7.010110
https://doi.org/10.1103/PhysRevSTPER.7.010110
https://doi.org/10.1371/journal.pone.0230442
https://doi.org/10.3402/meo.v2i.4288
https://doi.org/10.3402/meo.v2i.4288
https://doi.org/10.3389/fpsyg.2019.02970
https://doi.org/10.1016/j.ambp.2007.04.006
https://doi.org/10.1108/eb046814
https://doi.org/10.1177/1094428117697041
https://doi.org/10.1111/emip.12115
https://doi.org/10.1063/1.4801179
https://doi.org/10.1063/1.4801179


 Alan D. Mead and Chenxuan Zhou

71Vol 23(Special Issue 1) | 2022 | http://jattjournal.net/� Journal of Applied Testing Technology

Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M. & 
Robbins, P. (2008). Bloom’s taxonomy for CS assessment. 
Paper presented at Conference on Australasian 
computing education.

Yahya, A. A., Osman, A., Taleb, A., & Alattab, A. A. (2013). 
Analyzing the cognitive level of classroom questions 
using machine learning techniques. Procedia – Social 
and Behavioral Sciences, 97, 587-595. https://doi.
org/10.1016/j.sbspro.2013.10.277.

Yahya, A. A., & Osman, A. (2011). Automatic classification 
of questions into Bloom’s cognitive levels using support 
vector machines. Proceedings of the International Arab 
Conference on Information Technology. Riyadh, Saudi 

Arabia, 335-342. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.657.25&rep=rep1&type=pdf

Yusof, N., & Hui, C.J. (2010). Determination of Bloom’s 
cognitive level of question items using artificial neural 
network. 2010 10th International Conference on 
Intelligent Systems Design and Applications, 866-870. 
https://doi.org/10.1109/ISDA.2010.5687152

Zaidi, N. L. B., Grob, K. L., Monrad, S. M., Kurtz, J. B., Tai, 
A., Ahmed, A. Z., Gruppen, L. D., & Santen, S. A. (2018). 
Pushing critical thinking skills with multiple-choice 
questions: Does Bloom’s Taxonomy work? Academic 
Medicine, 93(6), 856-859. https://doi.org/10.1097/
ACM.0000000000002087

https://doi.org/10.1109/ISDA.2010.5687152
https://doi.org/10.1097/ACM.0000000000002087
https://doi.org/10.1097/ACM.0000000000002087

